This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a sequence shifted by A . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 4-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐵 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | 1 | shftfib | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) = ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) ) |
| 3 | 2 | eleq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) ↔ 𝑥 ∈ ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) ) ) |
| 4 | 3 | iotabidv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℩ 𝑥 𝑥 ∈ ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) ) ) |
| 5 | dffv3 | ⊢ ( ( 𝐹 shift 𝐴 ) ‘ 𝐵 ) = ( ℩ 𝑥 𝑥 ∈ ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) ) | |
| 6 | dffv3 | ⊢ ( 𝐹 ‘ ( 𝐵 − 𝐴 ) ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) ) | |
| 7 | 4 5 6 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐵 − 𝐴 ) ) ) |