This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two infinite series. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sersub.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| sersub.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| sersub.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | ||
| sersub.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | sersub | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sersub.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | sersub.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 3 | sersub.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | |
| 4 | sersub.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) | |
| 5 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
| 7 | subcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) |
| 9 | addsub4 | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( ( 𝑥 + 𝑦 ) − ( 𝑧 + 𝑤 ) ) = ( ( 𝑥 − 𝑧 ) + ( 𝑦 − 𝑤 ) ) ) | |
| 10 | 9 | eqcomd | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( ( 𝑥 − 𝑧 ) + ( 𝑦 − 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) − ( 𝑧 + 𝑤 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) ) → ( ( 𝑥 − 𝑧 ) + ( 𝑦 − 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) − ( 𝑧 + 𝑤 ) ) ) |
| 12 | 6 8 11 1 2 3 4 | seqcaopr2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |