This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zeo | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz | |- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
|
| 2 | oveq1 | |- ( N = 0 -> ( N / 2 ) = ( 0 / 2 ) ) |
|
| 3 | 2cn | |- 2 e. CC |
|
| 4 | 2ne0 | |- 2 =/= 0 |
|
| 5 | 3 4 | div0i | |- ( 0 / 2 ) = 0 |
| 6 | 0z | |- 0 e. ZZ |
|
| 7 | 5 6 | eqeltri | |- ( 0 / 2 ) e. ZZ |
| 8 | 2 7 | eqeltrdi | |- ( N = 0 -> ( N / 2 ) e. ZZ ) |
| 9 | 8 | pm2.24d | |- ( N = 0 -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 10 | 9 | adantl | |- ( ( N e. RR /\ N = 0 ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 11 | nnz | |- ( ( N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) |
|
| 12 | 11 | con3i | |- ( -. ( N / 2 ) e. ZZ -> -. ( N / 2 ) e. NN ) |
| 13 | nneo | |- ( N e. NN -> ( ( N / 2 ) e. NN <-> -. ( ( N + 1 ) / 2 ) e. NN ) ) |
|
| 14 | 13 | biimprd | |- ( N e. NN -> ( -. ( ( N + 1 ) / 2 ) e. NN -> ( N / 2 ) e. NN ) ) |
| 15 | 14 | con1d | |- ( N e. NN -> ( -. ( N / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. NN ) ) |
| 16 | nnz | |- ( ( ( N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) |
|
| 17 | 12 15 16 | syl56 | |- ( N e. NN -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 18 | 17 | adantl | |- ( ( N e. RR /\ N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 19 | recn | |- ( N e. RR -> N e. CC ) |
|
| 20 | divneg | |- ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( N / 2 ) = ( -u N / 2 ) ) |
|
| 21 | 3 4 20 | mp3an23 | |- ( N e. CC -> -u ( N / 2 ) = ( -u N / 2 ) ) |
| 22 | 19 21 | syl | |- ( N e. RR -> -u ( N / 2 ) = ( -u N / 2 ) ) |
| 23 | 22 | eleq1d | |- ( N e. RR -> ( -u ( N / 2 ) e. NN <-> ( -u N / 2 ) e. NN ) ) |
| 24 | nnnegz | |- ( -u ( N / 2 ) e. NN -> -u -u ( N / 2 ) e. ZZ ) |
|
| 25 | 23 24 | biimtrrdi | |- ( N e. RR -> ( ( -u N / 2 ) e. NN -> -u -u ( N / 2 ) e. ZZ ) ) |
| 26 | 19 | halfcld | |- ( N e. RR -> ( N / 2 ) e. CC ) |
| 27 | 26 | negnegd | |- ( N e. RR -> -u -u ( N / 2 ) = ( N / 2 ) ) |
| 28 | 27 | eleq1d | |- ( N e. RR -> ( -u -u ( N / 2 ) e. ZZ <-> ( N / 2 ) e. ZZ ) ) |
| 29 | 25 28 | sylibd | |- ( N e. RR -> ( ( -u N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) ) |
| 30 | 29 | adantr | |- ( ( N e. RR /\ -u N e. NN ) -> ( ( -u N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) ) |
| 31 | 30 | con3d | |- ( ( N e. RR /\ -u N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> -. ( -u N / 2 ) e. NN ) ) |
| 32 | nneo | |- ( -u N e. NN -> ( ( -u N / 2 ) e. NN <-> -. ( ( -u N + 1 ) / 2 ) e. NN ) ) |
|
| 33 | 32 | biimprd | |- ( -u N e. NN -> ( -. ( ( -u N + 1 ) / 2 ) e. NN -> ( -u N / 2 ) e. NN ) ) |
| 34 | 33 | con1d | |- ( -u N e. NN -> ( -. ( -u N / 2 ) e. NN -> ( ( -u N + 1 ) / 2 ) e. NN ) ) |
| 35 | nnz | |- ( ( ( -u N + 1 ) / 2 ) e. NN -> ( ( -u N + 1 ) / 2 ) e. ZZ ) |
|
| 36 | peano2zm | |- ( ( ( -u N + 1 ) / 2 ) e. ZZ -> ( ( ( -u N + 1 ) / 2 ) - 1 ) e. ZZ ) |
|
| 37 | ax-1cn | |- 1 e. CC |
|
| 38 | 37 3 | negsubdi2i | |- -u ( 1 - 2 ) = ( 2 - 1 ) |
| 39 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 40 | 38 39 | eqtr2i | |- 1 = -u ( 1 - 2 ) |
| 41 | 37 3 | subcli | |- ( 1 - 2 ) e. CC |
| 42 | 37 41 | negcon2i | |- ( 1 = -u ( 1 - 2 ) <-> ( 1 - 2 ) = -u 1 ) |
| 43 | 40 42 | mpbi | |- ( 1 - 2 ) = -u 1 |
| 44 | 43 | oveq2i | |- ( -u N + ( 1 - 2 ) ) = ( -u N + -u 1 ) |
| 45 | negcl | |- ( N e. CC -> -u N e. CC ) |
|
| 46 | addsubass | |- ( ( -u N e. CC /\ 1 e. CC /\ 2 e. CC ) -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) |
|
| 47 | 37 3 46 | mp3an23 | |- ( -u N e. CC -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) |
| 48 | 45 47 | syl | |- ( N e. CC -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) |
| 49 | negdi | |- ( ( N e. CC /\ 1 e. CC ) -> -u ( N + 1 ) = ( -u N + -u 1 ) ) |
|
| 50 | 37 49 | mpan2 | |- ( N e. CC -> -u ( N + 1 ) = ( -u N + -u 1 ) ) |
| 51 | 44 48 50 | 3eqtr4a | |- ( N e. CC -> ( ( -u N + 1 ) - 2 ) = -u ( N + 1 ) ) |
| 52 | 51 | oveq1d | |- ( N e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
| 53 | 2div2e1 | |- ( 2 / 2 ) = 1 |
|
| 54 | 53 | eqcomi | |- 1 = ( 2 / 2 ) |
| 55 | 54 | oveq2i | |- ( ( ( -u N + 1 ) / 2 ) - 1 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) |
| 56 | peano2cn | |- ( -u N e. CC -> ( -u N + 1 ) e. CC ) |
|
| 57 | 45 56 | syl | |- ( N e. CC -> ( -u N + 1 ) e. CC ) |
| 58 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 59 | divsubdir | |- ( ( ( -u N + 1 ) e. CC /\ 2 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
|
| 60 | 3 58 59 | mp3an23 | |- ( ( -u N + 1 ) e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
| 61 | 57 60 | syl | |- ( N e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
| 62 | 55 61 | eqtr4id | |- ( N e. CC -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = ( ( ( -u N + 1 ) - 2 ) / 2 ) ) |
| 63 | peano2cn | |- ( N e. CC -> ( N + 1 ) e. CC ) |
|
| 64 | divneg | |- ( ( ( N + 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
|
| 65 | 3 4 64 | mp3an23 | |- ( ( N + 1 ) e. CC -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
| 66 | 63 65 | syl | |- ( N e. CC -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
| 67 | 52 62 66 | 3eqtr4d | |- ( N e. CC -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = -u ( ( N + 1 ) / 2 ) ) |
| 68 | 19 67 | syl | |- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = -u ( ( N + 1 ) / 2 ) ) |
| 69 | 68 | eleq1d | |- ( N e. RR -> ( ( ( ( -u N + 1 ) / 2 ) - 1 ) e. ZZ <-> -u ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 70 | 36 69 | imbitrid | |- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> -u ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 71 | znegcl | |- ( -u ( ( N + 1 ) / 2 ) e. ZZ -> -u -u ( ( N + 1 ) / 2 ) e. ZZ ) |
|
| 72 | 70 71 | syl6 | |- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> -u -u ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 73 | peano2re | |- ( N e. RR -> ( N + 1 ) e. RR ) |
|
| 74 | 73 | recnd | |- ( N e. RR -> ( N + 1 ) e. CC ) |
| 75 | 74 | halfcld | |- ( N e. RR -> ( ( N + 1 ) / 2 ) e. CC ) |
| 76 | 75 | negnegd | |- ( N e. RR -> -u -u ( ( N + 1 ) / 2 ) = ( ( N + 1 ) / 2 ) ) |
| 77 | 76 | eleq1d | |- ( N e. RR -> ( -u -u ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 78 | 72 77 | sylibd | |- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 79 | 35 78 | syl5 | |- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 80 | 34 79 | sylan9r | |- ( ( N e. RR /\ -u N e. NN ) -> ( -. ( -u N / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 81 | 31 80 | syld | |- ( ( N e. RR /\ -u N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 82 | 10 18 81 | 3jaodan | |- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 83 | 1 82 | sylbi | |- ( N e. ZZ -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 84 | 83 | orrd | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) ) |