This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfseq.1 | |- F/_ x M |
|
| nfseq.2 | |- F/_ x .+ |
||
| nfseq.3 | |- F/_ x F |
||
| Assertion | nfseq | |- F/_ x seq M ( .+ , F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfseq.1 | |- F/_ x M |
|
| 2 | nfseq.2 | |- F/_ x .+ |
|
| 3 | nfseq.3 | |- F/_ x F |
|
| 4 | df-seq | |- seq M ( .+ , F ) = ( rec ( ( z e. _V , w e. _V |-> <. ( z + 1 ) , ( w .+ ( F ` ( z + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
|
| 5 | nfcv | |- F/_ x _V |
|
| 6 | nfcv | |- F/_ x ( z + 1 ) |
|
| 7 | nfcv | |- F/_ x w |
|
| 8 | 3 6 | nffv | |- F/_ x ( F ` ( z + 1 ) ) |
| 9 | 7 2 8 | nfov | |- F/_ x ( w .+ ( F ` ( z + 1 ) ) ) |
| 10 | 6 9 | nfop | |- F/_ x <. ( z + 1 ) , ( w .+ ( F ` ( z + 1 ) ) ) >. |
| 11 | 5 5 10 | nfmpo | |- F/_ x ( z e. _V , w e. _V |-> <. ( z + 1 ) , ( w .+ ( F ` ( z + 1 ) ) ) >. ) |
| 12 | 3 1 | nffv | |- F/_ x ( F ` M ) |
| 13 | 1 12 | nfop | |- F/_ x <. M , ( F ` M ) >. |
| 14 | 11 13 | nfrdg | |- F/_ x rec ( ( z e. _V , w e. _V |-> <. ( z + 1 ) , ( w .+ ( F ` ( z + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) |
| 15 | nfcv | |- F/_ x _om |
|
| 16 | 14 15 | nfima | |- F/_ x ( rec ( ( z e. _V , w e. _V |-> <. ( z + 1 ) , ( w .+ ( F ` ( z + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
| 17 | 4 16 | nfcxfr | |- F/_ x seq M ( .+ , F ) |