This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnrest.1 | |- X = U. J |
|
| Assertion | cnrest | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( F |` A ) e. ( ( J |`t A ) Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrest.1 | |- X = U. J |
|
| 2 | eqid | |- U. K = U. K |
|
| 3 | 1 2 | cnf | |- ( F e. ( J Cn K ) -> F : X --> U. K ) |
| 4 | 3 | adantr | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> F : X --> U. K ) |
| 5 | simpr | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> A C_ X ) |
|
| 6 | 4 5 | fssresd | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( F |` A ) : A --> U. K ) |
| 7 | cnvresima | |- ( `' ( F |` A ) " o ) = ( ( `' F " o ) i^i A ) |
|
| 8 | cntop1 | |- ( F e. ( J Cn K ) -> J e. Top ) |
|
| 9 | 8 | adantr | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> J e. Top ) |
| 10 | 9 | adantr | |- ( ( ( F e. ( J Cn K ) /\ A C_ X ) /\ o e. K ) -> J e. Top ) |
| 11 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 12 | ssexg | |- ( ( A C_ X /\ X e. J ) -> A e. _V ) |
|
| 13 | 12 | ancoms | |- ( ( X e. J /\ A C_ X ) -> A e. _V ) |
| 14 | 11 13 | sylan | |- ( ( J e. Top /\ A C_ X ) -> A e. _V ) |
| 15 | 8 14 | sylan | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> A e. _V ) |
| 16 | 15 | adantr | |- ( ( ( F e. ( J Cn K ) /\ A C_ X ) /\ o e. K ) -> A e. _V ) |
| 17 | cnima | |- ( ( F e. ( J Cn K ) /\ o e. K ) -> ( `' F " o ) e. J ) |
|
| 18 | 17 | adantlr | |- ( ( ( F e. ( J Cn K ) /\ A C_ X ) /\ o e. K ) -> ( `' F " o ) e. J ) |
| 19 | elrestr | |- ( ( J e. Top /\ A e. _V /\ ( `' F " o ) e. J ) -> ( ( `' F " o ) i^i A ) e. ( J |`t A ) ) |
|
| 20 | 10 16 18 19 | syl3anc | |- ( ( ( F e. ( J Cn K ) /\ A C_ X ) /\ o e. K ) -> ( ( `' F " o ) i^i A ) e. ( J |`t A ) ) |
| 21 | 7 20 | eqeltrid | |- ( ( ( F e. ( J Cn K ) /\ A C_ X ) /\ o e. K ) -> ( `' ( F |` A ) " o ) e. ( J |`t A ) ) |
| 22 | 21 | ralrimiva | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> A. o e. K ( `' ( F |` A ) " o ) e. ( J |`t A ) ) |
| 23 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 24 | 8 23 | sylib | |- ( F e. ( J Cn K ) -> J e. ( TopOn ` X ) ) |
| 25 | resttopon | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
|
| 26 | 24 25 | sylan | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
| 27 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 28 | 27 | adantr | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> K e. Top ) |
| 29 | 2 | toptopon | |- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
| 30 | 28 29 | sylib | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> K e. ( TopOn ` U. K ) ) |
| 31 | iscn | |- ( ( ( J |`t A ) e. ( TopOn ` A ) /\ K e. ( TopOn ` U. K ) ) -> ( ( F |` A ) e. ( ( J |`t A ) Cn K ) <-> ( ( F |` A ) : A --> U. K /\ A. o e. K ( `' ( F |` A ) " o ) e. ( J |`t A ) ) ) ) |
|
| 32 | 26 30 31 | syl2anc | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( ( F |` A ) e. ( ( J |`t A ) Cn K ) <-> ( ( F |` A ) : A --> U. K /\ A. o e. K ( `' ( F |` A ) " o ) e. ( J |`t A ) ) ) ) |
| 33 | 6 22 32 | mpbir2and | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( F |` A ) e. ( ( J |`t A ) Cn K ) ) |