This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem funcnvcnv

Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004)

Ref Expression
Assertion funcnvcnv
|- ( Fun A -> Fun `' `' A )

Proof

Step Hyp Ref Expression
1 cnvcnvss
 |-  `' `' A C_ A
2 funss
 |-  ( `' `' A C_ A -> ( Fun A -> Fun `' `' A ) )
3 1 2 ax-mp
 |-  ( Fun A -> Fun `' `' A )