This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscld.1 | |- X = U. J |
|
| Assertion | isopn2 | |- ( ( J e. Top /\ S C_ X ) -> ( S e. J <-> ( X \ S ) e. ( Clsd ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | |- X = U. J |
|
| 2 | difss | |- ( X \ S ) C_ X |
|
| 3 | 1 | iscld2 | |- ( ( J e. Top /\ ( X \ S ) C_ X ) -> ( ( X \ S ) e. ( Clsd ` J ) <-> ( X \ ( X \ S ) ) e. J ) ) |
| 4 | 2 3 | mpan2 | |- ( J e. Top -> ( ( X \ S ) e. ( Clsd ` J ) <-> ( X \ ( X \ S ) ) e. J ) ) |
| 5 | dfss4 | |- ( S C_ X <-> ( X \ ( X \ S ) ) = S ) |
|
| 6 | 5 | biimpi | |- ( S C_ X -> ( X \ ( X \ S ) ) = S ) |
| 7 | 6 | eleq1d | |- ( S C_ X -> ( ( X \ ( X \ S ) ) e. J <-> S e. J ) ) |
| 8 | 4 7 | sylan9bb | |- ( ( J e. Top /\ S C_ X ) -> ( ( X \ S ) e. ( Clsd ` J ) <-> S e. J ) ) |
| 9 | 8 | bicomd | |- ( ( J e. Top /\ S C_ X ) -> ( S e. J <-> ( X \ S ) e. ( Clsd ` J ) ) ) |