This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvresima | |- ( `' ( F |` A ) " B ) = ( ( `' F " B ) i^i A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41v | |- ( E. s ( ( s e. B /\ <. s , t >. e. `' F ) /\ t e. A ) <-> ( E. s ( s e. B /\ <. s , t >. e. `' F ) /\ t e. A ) ) |
|
| 2 | vex | |- s e. _V |
|
| 3 | 2 | opelresi | |- ( <. t , s >. e. ( F |` A ) <-> ( t e. A /\ <. t , s >. e. F ) ) |
| 4 | vex | |- t e. _V |
|
| 5 | 2 4 | opelcnv | |- ( <. s , t >. e. `' ( F |` A ) <-> <. t , s >. e. ( F |` A ) ) |
| 6 | 2 4 | opelcnv | |- ( <. s , t >. e. `' F <-> <. t , s >. e. F ) |
| 7 | 6 | anbi2ci | |- ( ( <. s , t >. e. `' F /\ t e. A ) <-> ( t e. A /\ <. t , s >. e. F ) ) |
| 8 | 3 5 7 | 3bitr4i | |- ( <. s , t >. e. `' ( F |` A ) <-> ( <. s , t >. e. `' F /\ t e. A ) ) |
| 9 | 8 | bianass | |- ( ( s e. B /\ <. s , t >. e. `' ( F |` A ) ) <-> ( ( s e. B /\ <. s , t >. e. `' F ) /\ t e. A ) ) |
| 10 | 9 | exbii | |- ( E. s ( s e. B /\ <. s , t >. e. `' ( F |` A ) ) <-> E. s ( ( s e. B /\ <. s , t >. e. `' F ) /\ t e. A ) ) |
| 11 | 4 | elima3 | |- ( t e. ( `' F " B ) <-> E. s ( s e. B /\ <. s , t >. e. `' F ) ) |
| 12 | 11 | anbi1i | |- ( ( t e. ( `' F " B ) /\ t e. A ) <-> ( E. s ( s e. B /\ <. s , t >. e. `' F ) /\ t e. A ) ) |
| 13 | 1 10 12 | 3bitr4i | |- ( E. s ( s e. B /\ <. s , t >. e. `' ( F |` A ) ) <-> ( t e. ( `' F " B ) /\ t e. A ) ) |
| 14 | 4 | elima3 | |- ( t e. ( `' ( F |` A ) " B ) <-> E. s ( s e. B /\ <. s , t >. e. `' ( F |` A ) ) ) |
| 15 | elin | |- ( t e. ( ( `' F " B ) i^i A ) <-> ( t e. ( `' F " B ) /\ t e. A ) ) |
|
| 16 | 13 14 15 | 3bitr4i | |- ( t e. ( `' ( F |` A ) " B ) <-> t e. ( ( `' F " B ) i^i A ) ) |
| 17 | 16 | eqriv | |- ( `' ( F |` A ) " B ) = ( ( `' F " B ) i^i A ) |