This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtopomap.4 | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| qtopomap.5 | |- ( ph -> F e. ( J Cn K ) ) |
||
| qtopomap.6 | |- ( ph -> ran F = Y ) |
||
| qtopomap.7 | |- ( ( ph /\ x e. J ) -> ( F " x ) e. K ) |
||
| Assertion | qtopomap | |- ( ph -> K = ( J qTop F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopomap.4 | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 2 | qtopomap.5 | |- ( ph -> F e. ( J Cn K ) ) |
|
| 3 | qtopomap.6 | |- ( ph -> ran F = Y ) |
|
| 4 | qtopomap.7 | |- ( ( ph /\ x e. J ) -> ( F " x ) e. K ) |
|
| 5 | qtopss | |- ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) -> K C_ ( J qTop F ) ) |
|
| 6 | 2 1 3 5 | syl3anc | |- ( ph -> K C_ ( J qTop F ) ) |
| 7 | cntop1 | |- ( F e. ( J Cn K ) -> J e. Top ) |
|
| 8 | 2 7 | syl | |- ( ph -> J e. Top ) |
| 9 | toptopon2 | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
|
| 10 | 8 9 | sylib | |- ( ph -> J e. ( TopOn ` U. J ) ) |
| 11 | cnf2 | |- ( ( J e. ( TopOn ` U. J ) /\ K e. ( TopOn ` Y ) /\ F e. ( J Cn K ) ) -> F : U. J --> Y ) |
|
| 12 | 10 1 2 11 | syl3anc | |- ( ph -> F : U. J --> Y ) |
| 13 | 12 | ffnd | |- ( ph -> F Fn U. J ) |
| 14 | df-fo | |- ( F : U. J -onto-> Y <-> ( F Fn U. J /\ ran F = Y ) ) |
|
| 15 | 13 3 14 | sylanbrc | |- ( ph -> F : U. J -onto-> Y ) |
| 16 | elqtop3 | |- ( ( J e. ( TopOn ` U. J ) /\ F : U. J -onto-> Y ) -> ( y e. ( J qTop F ) <-> ( y C_ Y /\ ( `' F " y ) e. J ) ) ) |
|
| 17 | 10 15 16 | syl2anc | |- ( ph -> ( y e. ( J qTop F ) <-> ( y C_ Y /\ ( `' F " y ) e. J ) ) ) |
| 18 | foimacnv | |- ( ( F : U. J -onto-> Y /\ y C_ Y ) -> ( F " ( `' F " y ) ) = y ) |
|
| 19 | 15 18 | sylan | |- ( ( ph /\ y C_ Y ) -> ( F " ( `' F " y ) ) = y ) |
| 20 | 19 | adantrr | |- ( ( ph /\ ( y C_ Y /\ ( `' F " y ) e. J ) ) -> ( F " ( `' F " y ) ) = y ) |
| 21 | imaeq2 | |- ( x = ( `' F " y ) -> ( F " x ) = ( F " ( `' F " y ) ) ) |
|
| 22 | 21 | eleq1d | |- ( x = ( `' F " y ) -> ( ( F " x ) e. K <-> ( F " ( `' F " y ) ) e. K ) ) |
| 23 | 4 | ralrimiva | |- ( ph -> A. x e. J ( F " x ) e. K ) |
| 24 | 23 | adantr | |- ( ( ph /\ ( y C_ Y /\ ( `' F " y ) e. J ) ) -> A. x e. J ( F " x ) e. K ) |
| 25 | simprr | |- ( ( ph /\ ( y C_ Y /\ ( `' F " y ) e. J ) ) -> ( `' F " y ) e. J ) |
|
| 26 | 22 24 25 | rspcdva | |- ( ( ph /\ ( y C_ Y /\ ( `' F " y ) e. J ) ) -> ( F " ( `' F " y ) ) e. K ) |
| 27 | 20 26 | eqeltrrd | |- ( ( ph /\ ( y C_ Y /\ ( `' F " y ) e. J ) ) -> y e. K ) |
| 28 | 27 | ex | |- ( ph -> ( ( y C_ Y /\ ( `' F " y ) e. J ) -> y e. K ) ) |
| 29 | 17 28 | sylbid | |- ( ph -> ( y e. ( J qTop F ) -> y e. K ) ) |
| 30 | 29 | ssrdv | |- ( ph -> ( J qTop F ) C_ K ) |
| 31 | 6 30 | eqssd | |- ( ph -> K = ( J qTop F ) ) |