This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elqtop3 | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> Y ) -> ( A e. ( J qTop F ) <-> ( A C_ Y /\ ( `' F " A ) e. J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 2 | eqimss | |- ( X = U. J -> X C_ U. J ) |
|
| 3 | 1 2 | syl | |- ( J e. ( TopOn ` X ) -> X C_ U. J ) |
| 4 | 3 | adantr | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> Y ) -> X C_ U. J ) |
| 5 | eqid | |- U. J = U. J |
|
| 6 | 5 | elqtop | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> Y /\ X C_ U. J ) -> ( A e. ( J qTop F ) <-> ( A C_ Y /\ ( `' F " A ) e. J ) ) ) |
| 7 | 4 6 | mpd3an3 | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> Y ) -> ( A e. ( J qTop F ) <-> ( A C_ Y /\ ( `' F " A ) e. J ) ) ) |