This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A surjective continuous function from J to K induces a topology J qTop F on the base set of K . This topology is in general finer than K . Together with qtopid , this implies that J qTop F is the finest topology making F continuous, i.e. the final topology with respect to the family { F } . (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qtopss | |- ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) -> K C_ ( J qTop F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponss | |- ( ( K e. ( TopOn ` Y ) /\ x e. K ) -> x C_ Y ) |
|
| 2 | 1 | 3ad2antl2 | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> x C_ Y ) |
| 3 | cnima | |- ( ( F e. ( J Cn K ) /\ x e. K ) -> ( `' F " x ) e. J ) |
|
| 4 | 3 | 3ad2antl1 | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> ( `' F " x ) e. J ) |
| 5 | simpl1 | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> F e. ( J Cn K ) ) |
|
| 6 | cntop1 | |- ( F e. ( J Cn K ) -> J e. Top ) |
|
| 7 | 5 6 | syl | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> J e. Top ) |
| 8 | toptopon2 | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
|
| 9 | 7 8 | sylib | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> J e. ( TopOn ` U. J ) ) |
| 10 | simpl2 | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> K e. ( TopOn ` Y ) ) |
|
| 11 | cnf2 | |- ( ( J e. ( TopOn ` U. J ) /\ K e. ( TopOn ` Y ) /\ F e. ( J Cn K ) ) -> F : U. J --> Y ) |
|
| 12 | 9 10 5 11 | syl3anc | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> F : U. J --> Y ) |
| 13 | 12 | ffnd | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> F Fn U. J ) |
| 14 | simpl3 | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> ran F = Y ) |
|
| 15 | df-fo | |- ( F : U. J -onto-> Y <-> ( F Fn U. J /\ ran F = Y ) ) |
|
| 16 | 13 14 15 | sylanbrc | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> F : U. J -onto-> Y ) |
| 17 | elqtop3 | |- ( ( J e. ( TopOn ` U. J ) /\ F : U. J -onto-> Y ) -> ( x e. ( J qTop F ) <-> ( x C_ Y /\ ( `' F " x ) e. J ) ) ) |
|
| 18 | 9 16 17 | syl2anc | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> ( x e. ( J qTop F ) <-> ( x C_ Y /\ ( `' F " x ) e. J ) ) ) |
| 19 | 2 4 18 | mpbir2and | |- ( ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) /\ x e. K ) -> x e. ( J qTop F ) ) |
| 20 | 19 | ex | |- ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) -> ( x e. K -> x e. ( J qTop F ) ) ) |
| 21 | 20 | ssrdv | |- ( ( F e. ( J Cn K ) /\ K e. ( TopOn ` Y ) /\ ran F = Y ) -> K C_ ( J qTop F ) ) |