This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qtopid | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F Fn X ) |
|
| 2 | dffn4 | |- ( F Fn X <-> F : X -onto-> ran F ) |
|
| 3 | 1 2 | sylib | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F : X -onto-> ran F ) |
| 4 | fof | |- ( F : X -onto-> ran F -> F : X --> ran F ) |
|
| 5 | 3 4 | syl | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F : X --> ran F ) |
| 6 | elqtop3 | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( x e. ( J qTop F ) <-> ( x C_ ran F /\ ( `' F " x ) e. J ) ) ) |
|
| 7 | 3 6 | syldan | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> ( x e. ( J qTop F ) <-> ( x C_ ran F /\ ( `' F " x ) e. J ) ) ) |
| 8 | 7 | simplbda | |- ( ( ( J e. ( TopOn ` X ) /\ F Fn X ) /\ x e. ( J qTop F ) ) -> ( `' F " x ) e. J ) |
| 9 | 8 | ralrimiva | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> A. x e. ( J qTop F ) ( `' F " x ) e. J ) |
| 10 | qtoptopon | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
|
| 11 | 3 10 | syldan | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
| 12 | iscn | |- ( ( J e. ( TopOn ` X ) /\ ( J qTop F ) e. ( TopOn ` ran F ) ) -> ( F e. ( J Cn ( J qTop F ) ) <-> ( F : X --> ran F /\ A. x e. ( J qTop F ) ( `' F " x ) e. J ) ) ) |
|
| 13 | 11 12 | syldan | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> ( F e. ( J Cn ( J qTop F ) ) <-> ( F : X --> ran F /\ A. x e. ( J qTop F ) ( `' F " x ) e. J ) ) ) |
| 14 | 5 9 13 | mpbir2and | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |