This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | focdmex | |- ( A e. C -> ( F : A -onto-> B -> B e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun | |- ( F : A -onto-> B -> Fun F ) |
|
| 2 | funrnex | |- ( dom F e. C -> ( Fun F -> ran F e. _V ) ) |
|
| 3 | 1 2 | syl5com | |- ( F : A -onto-> B -> ( dom F e. C -> ran F e. _V ) ) |
| 4 | fof | |- ( F : A -onto-> B -> F : A --> B ) |
|
| 5 | 4 | fdmd | |- ( F : A -onto-> B -> dom F = A ) |
| 6 | 5 | eleq1d | |- ( F : A -onto-> B -> ( dom F e. C <-> A e. C ) ) |
| 7 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 8 | 7 | eleq1d | |- ( F : A -onto-> B -> ( ran F e. _V <-> B e. _V ) ) |
| 9 | 3 6 8 | 3imtr3d | |- ( F : A -onto-> B -> ( A e. C -> B e. _V ) ) |
| 10 | 9 | com12 | |- ( A e. C -> ( F : A -onto-> B -> B e. _V ) ) |