This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restcldr | |- ( ( A e. ( Clsd ` J ) /\ B e. ( Clsd ` ( J |`t A ) ) ) -> B e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl | |- ( A e. ( Clsd ` J ) -> J e. Top ) |
|
| 2 | eqid | |- U. J = U. J |
|
| 3 | 2 | cldss | |- ( A e. ( Clsd ` J ) -> A C_ U. J ) |
| 4 | 2 | restcld | |- ( ( J e. Top /\ A C_ U. J ) -> ( B e. ( Clsd ` ( J |`t A ) ) <-> E. v e. ( Clsd ` J ) B = ( v i^i A ) ) ) |
| 5 | 1 3 4 | syl2anc | |- ( A e. ( Clsd ` J ) -> ( B e. ( Clsd ` ( J |`t A ) ) <-> E. v e. ( Clsd ` J ) B = ( v i^i A ) ) ) |
| 6 | incld | |- ( ( v e. ( Clsd ` J ) /\ A e. ( Clsd ` J ) ) -> ( v i^i A ) e. ( Clsd ` J ) ) |
|
| 7 | 6 | ancoms | |- ( ( A e. ( Clsd ` J ) /\ v e. ( Clsd ` J ) ) -> ( v i^i A ) e. ( Clsd ` J ) ) |
| 8 | eleq1 | |- ( B = ( v i^i A ) -> ( B e. ( Clsd ` J ) <-> ( v i^i A ) e. ( Clsd ` J ) ) ) |
|
| 9 | 7 8 | syl5ibrcom | |- ( ( A e. ( Clsd ` J ) /\ v e. ( Clsd ` J ) ) -> ( B = ( v i^i A ) -> B e. ( Clsd ` J ) ) ) |
| 10 | 9 | rexlimdva | |- ( A e. ( Clsd ` J ) -> ( E. v e. ( Clsd ` J ) B = ( v i^i A ) -> B e. ( Clsd ` J ) ) ) |
| 11 | 5 10 | sylbid | |- ( A e. ( Clsd ` J ) -> ( B e. ( Clsd ` ( J |`t A ) ) -> B e. ( Clsd ` J ) ) ) |
| 12 | 11 | imp | |- ( ( A e. ( Clsd ` J ) /\ B e. ( Clsd ` ( J |`t A ) ) ) -> B e. ( Clsd ` J ) ) |