This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of an onto function. (Contributed by NM, 4-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fores | |- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) : A -onto-> ( F " A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres | |- ( Fun F -> Fun ( F |` A ) ) |
|
| 2 | 1 | anim1i | |- ( ( Fun F /\ A C_ dom F ) -> ( Fun ( F |` A ) /\ A C_ dom F ) ) |
| 3 | df-fn | |- ( ( F |` A ) Fn A <-> ( Fun ( F |` A ) /\ dom ( F |` A ) = A ) ) |
|
| 4 | df-ima | |- ( F " A ) = ran ( F |` A ) |
|
| 5 | 4 | eqcomi | |- ran ( F |` A ) = ( F " A ) |
| 6 | df-fo | |- ( ( F |` A ) : A -onto-> ( F " A ) <-> ( ( F |` A ) Fn A /\ ran ( F |` A ) = ( F " A ) ) ) |
|
| 7 | 5 6 | mpbiran2 | |- ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) Fn A ) |
| 8 | ssdmres | |- ( A C_ dom F <-> dom ( F |` A ) = A ) |
|
| 9 | 8 | anbi2i | |- ( ( Fun ( F |` A ) /\ A C_ dom F ) <-> ( Fun ( F |` A ) /\ dom ( F |` A ) = A ) ) |
| 10 | 3 7 9 | 3bitr4i | |- ( ( F |` A ) : A -onto-> ( F " A ) <-> ( Fun ( F |` A ) /\ A C_ dom F ) ) |
| 11 | 2 10 | sylibr | |- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) : A -onto-> ( F " A ) ) |