This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show that C - B and C + B are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem4 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || A ) |
|
| 2 | nnz | |- ( C e. NN -> C e. ZZ ) |
|
| 3 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 4 | zsubcl | |- ( ( C e. ZZ /\ B e. ZZ ) -> ( C - B ) e. ZZ ) |
|
| 5 | 2 3 4 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
| 6 | 5 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
| 7 | 6 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. ZZ ) |
| 8 | simp13 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. NN ) |
|
| 9 | simp12 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. NN ) |
|
| 10 | 8 9 | nnaddcld | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. NN ) |
| 11 | 10 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. ZZ ) |
| 12 | gcddvds | |- ( ( ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) -> ( ( ( C - B ) gcd ( C + B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( C + B ) ) ) |
|
| 13 | 7 11 12 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( C + B ) ) ) |
| 14 | 13 | simprd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( C + B ) ) |
| 15 | breq1 | |- ( ( ( C - B ) gcd ( C + B ) ) = 2 -> ( ( ( C - B ) gcd ( C + B ) ) || ( C + B ) <-> 2 || ( C + B ) ) ) |
|
| 16 | 15 | biimpd | |- ( ( ( C - B ) gcd ( C + B ) ) = 2 -> ( ( ( C - B ) gcd ( C + B ) ) || ( C + B ) -> 2 || ( C + B ) ) ) |
| 17 | 14 16 | mpan9 | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( C + B ) ) |
| 18 | 2z | |- 2 e. ZZ |
|
| 19 | simpl13 | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> C e. NN ) |
|
| 20 | 19 | nnzd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> C e. ZZ ) |
| 21 | simpl12 | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> B e. NN ) |
|
| 22 | 21 | nnzd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> B e. ZZ ) |
| 23 | 20 22 | zaddcld | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( C + B ) e. ZZ ) |
| 24 | 20 22 | zsubcld | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( C - B ) e. ZZ ) |
| 25 | dvdsmultr1 | |- ( ( 2 e. ZZ /\ ( C + B ) e. ZZ /\ ( C - B ) e. ZZ ) -> ( 2 || ( C + B ) -> 2 || ( ( C + B ) x. ( C - B ) ) ) ) |
|
| 26 | 18 23 24 25 | mp3an2i | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( 2 || ( C + B ) -> 2 || ( ( C + B ) x. ( C - B ) ) ) ) |
| 27 | 17 26 | mpd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( ( C + B ) x. ( C - B ) ) ) |
| 28 | 19 | nncnd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> C e. CC ) |
| 29 | 21 | nncnd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> B e. CC ) |
| 30 | subsq | |- ( ( C e. CC /\ B e. CC ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
|
| 31 | 28 29 30 | syl2anc | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
| 32 | 27 31 | breqtrrd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
| 33 | simpl2 | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
|
| 34 | 33 | oveq1d | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
| 35 | simpl11 | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> A e. NN ) |
|
| 36 | 35 | nnsqcld | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( A ^ 2 ) e. NN ) |
| 37 | 36 | nncnd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( A ^ 2 ) e. CC ) |
| 38 | 21 | nnsqcld | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( B ^ 2 ) e. NN ) |
| 39 | 38 | nncnd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( B ^ 2 ) e. CC ) |
| 40 | 37 39 | pncand | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 41 | 34 40 | eqtr3d | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 42 | 32 41 | breqtrd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( A ^ 2 ) ) |
| 43 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 44 | 43 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 45 | 44 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. ZZ ) |
| 46 | 45 | adantr | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> A e. ZZ ) |
| 47 | 2prm | |- 2 e. Prime |
|
| 48 | 2nn | |- 2 e. NN |
|
| 49 | prmdvdsexp | |- ( ( 2 e. Prime /\ A e. ZZ /\ 2 e. NN ) -> ( 2 || ( A ^ 2 ) <-> 2 || A ) ) |
|
| 50 | 47 48 49 | mp3an13 | |- ( A e. ZZ -> ( 2 || ( A ^ 2 ) <-> 2 || A ) ) |
| 51 | 46 50 | syl | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( 2 || ( A ^ 2 ) <-> 2 || A ) ) |
| 52 | 42 51 | mpbid | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || A ) |
| 53 | 1 52 | mtand | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. ( ( C - B ) gcd ( C + B ) ) = 2 ) |
| 54 | neg1z | |- -u 1 e. ZZ |
|
| 55 | gcdaddm | |- ( ( -u 1 e. ZZ /\ ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) ) |
|
| 56 | 54 7 11 55 | mp3an2i | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) ) |
| 57 | 8 | nncnd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. CC ) |
| 58 | 9 | nncnd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. CC ) |
| 59 | pnncan | |- ( ( C e. CC /\ B e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( B + B ) ) |
|
| 60 | 59 | 3anidm23 | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( B + B ) ) |
| 61 | subcl | |- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
|
| 62 | 61 | mulm1d | |- ( ( C e. CC /\ B e. CC ) -> ( -u 1 x. ( C - B ) ) = -u ( C - B ) ) |
| 63 | 62 | oveq2d | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) = ( ( C + B ) + -u ( C - B ) ) ) |
| 64 | addcl | |- ( ( C e. CC /\ B e. CC ) -> ( C + B ) e. CC ) |
|
| 65 | 64 61 | negsubd | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + -u ( C - B ) ) = ( ( C + B ) - ( C - B ) ) ) |
| 66 | 63 65 | eqtrd | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) = ( ( C + B ) - ( C - B ) ) ) |
| 67 | 2times | |- ( B e. CC -> ( 2 x. B ) = ( B + B ) ) |
|
| 68 | 67 | adantl | |- ( ( C e. CC /\ B e. CC ) -> ( 2 x. B ) = ( B + B ) ) |
| 69 | 60 66 68 | 3eqtr4d | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) = ( 2 x. B ) ) |
| 70 | 69 | oveq2d | |- ( ( C e. CC /\ B e. CC ) -> ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) = ( ( C - B ) gcd ( 2 x. B ) ) ) |
| 71 | 57 58 70 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) = ( ( C - B ) gcd ( 2 x. B ) ) ) |
| 72 | 56 71 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( 2 x. B ) ) ) |
| 73 | 9 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. ZZ ) |
| 74 | zmulcl | |- ( ( 2 e. ZZ /\ B e. ZZ ) -> ( 2 x. B ) e. ZZ ) |
|
| 75 | 18 73 74 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. B ) e. ZZ ) |
| 76 | gcddvds | |- ( ( ( C - B ) e. ZZ /\ ( 2 x. B ) e. ZZ ) -> ( ( ( C - B ) gcd ( 2 x. B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. B ) ) || ( 2 x. B ) ) ) |
|
| 77 | 7 75 76 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( 2 x. B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. B ) ) || ( 2 x. B ) ) ) |
| 78 | 77 | simprd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( 2 x. B ) ) || ( 2 x. B ) ) |
| 79 | 72 78 | eqbrtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( 2 x. B ) ) |
| 80 | 1z | |- 1 e. ZZ |
|
| 81 | gcdaddm | |- ( ( 1 e. ZZ /\ ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( 1 x. ( C - B ) ) ) ) ) |
|
| 82 | 80 7 11 81 | mp3an2i | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( 1 x. ( C - B ) ) ) ) ) |
| 83 | ppncan | |- ( ( C e. CC /\ B e. CC /\ C e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) |
|
| 84 | 83 | 3anidm13 | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) |
| 85 | 61 | mullidd | |- ( ( C e. CC /\ B e. CC ) -> ( 1 x. ( C - B ) ) = ( C - B ) ) |
| 86 | 85 | oveq2d | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( 1 x. ( C - B ) ) ) = ( ( C + B ) + ( C - B ) ) ) |
| 87 | 2times | |- ( C e. CC -> ( 2 x. C ) = ( C + C ) ) |
|
| 88 | 87 | adantr | |- ( ( C e. CC /\ B e. CC ) -> ( 2 x. C ) = ( C + C ) ) |
| 89 | 84 86 88 | 3eqtr4d | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( 1 x. ( C - B ) ) ) = ( 2 x. C ) ) |
| 90 | 57 58 89 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) + ( 1 x. ( C - B ) ) ) = ( 2 x. C ) ) |
| 91 | 90 | oveq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( ( C + B ) + ( 1 x. ( C - B ) ) ) ) = ( ( C - B ) gcd ( 2 x. C ) ) ) |
| 92 | 82 91 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( 2 x. C ) ) ) |
| 93 | 8 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. ZZ ) |
| 94 | zmulcl | |- ( ( 2 e. ZZ /\ C e. ZZ ) -> ( 2 x. C ) e. ZZ ) |
|
| 95 | 18 93 94 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. C ) e. ZZ ) |
| 96 | gcddvds | |- ( ( ( C - B ) e. ZZ /\ ( 2 x. C ) e. ZZ ) -> ( ( ( C - B ) gcd ( 2 x. C ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. C ) ) || ( 2 x. C ) ) ) |
|
| 97 | 7 95 96 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( 2 x. C ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. C ) ) || ( 2 x. C ) ) ) |
| 98 | 97 | simprd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( 2 x. C ) ) || ( 2 x. C ) ) |
| 99 | 92 98 | eqbrtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( 2 x. C ) ) |
| 100 | nnaddcl | |- ( ( C e. NN /\ B e. NN ) -> ( C + B ) e. NN ) |
|
| 101 | 100 | nnne0d | |- ( ( C e. NN /\ B e. NN ) -> ( C + B ) =/= 0 ) |
| 102 | 101 | ancoms | |- ( ( B e. NN /\ C e. NN ) -> ( C + B ) =/= 0 ) |
| 103 | 102 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) =/= 0 ) |
| 104 | 103 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) =/= 0 ) |
| 105 | 104 | neneqd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. ( C + B ) = 0 ) |
| 106 | 105 | intnand | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. ( ( C - B ) = 0 /\ ( C + B ) = 0 ) ) |
| 107 | gcdn0cl | |- ( ( ( ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) /\ -. ( ( C - B ) = 0 /\ ( C + B ) = 0 ) ) -> ( ( C - B ) gcd ( C + B ) ) e. NN ) |
|
| 108 | 7 11 106 107 | syl21anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) e. NN ) |
| 109 | 108 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) e. ZZ ) |
| 110 | dvdsgcd | |- ( ( ( ( C - B ) gcd ( C + B ) ) e. ZZ /\ ( 2 x. B ) e. ZZ /\ ( 2 x. C ) e. ZZ ) -> ( ( ( ( C - B ) gcd ( C + B ) ) || ( 2 x. B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( 2 x. C ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( ( 2 x. B ) gcd ( 2 x. C ) ) ) ) |
|
| 111 | 109 75 95 110 | syl3anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( C - B ) gcd ( C + B ) ) || ( 2 x. B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( 2 x. C ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( ( 2 x. B ) gcd ( 2 x. C ) ) ) ) |
| 112 | 79 99 111 | mp2and | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( ( 2 x. B ) gcd ( 2 x. C ) ) ) |
| 113 | 2nn0 | |- 2 e. NN0 |
|
| 114 | mulgcd | |- ( ( 2 e. NN0 /\ B e. ZZ /\ C e. ZZ ) -> ( ( 2 x. B ) gcd ( 2 x. C ) ) = ( 2 x. ( B gcd C ) ) ) |
|
| 115 | 113 73 93 114 | mp3an2i | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. B ) gcd ( 2 x. C ) ) = ( 2 x. ( B gcd C ) ) ) |
| 116 | pythagtriplem3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B gcd C ) = 1 ) |
|
| 117 | 116 | oveq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( B gcd C ) ) = ( 2 x. 1 ) ) |
| 118 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 119 | 117 118 | eqtrdi | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( B gcd C ) ) = 2 ) |
| 120 | 115 119 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. B ) gcd ( 2 x. C ) ) = 2 ) |
| 121 | 112 120 | breqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || 2 ) |
| 122 | dvdsprime | |- ( ( 2 e. Prime /\ ( ( C - B ) gcd ( C + B ) ) e. NN ) -> ( ( ( C - B ) gcd ( C + B ) ) || 2 <-> ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) ) ) |
|
| 123 | 47 108 122 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) || 2 <-> ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) ) ) |
| 124 | 121 123 | mpbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) ) |
| 125 | orel1 | |- ( -. ( ( C - B ) gcd ( C + B ) ) = 2 -> ( ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) -> ( ( C - B ) gcd ( C + B ) ) = 1 ) ) |
|
| 126 | 53 124 125 | sylc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = 1 ) |