This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsgcd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> K || ( M gcd N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezout | |- ( ( M e. ZZ /\ N e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) |
| 3 | dvds2ln | |- ( ( ( x e. ZZ /\ y e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) -> ( ( K || M /\ K || N ) -> K || ( ( x x. M ) + ( y x. N ) ) ) ) |
|
| 4 | 3 | 3impia | |- ( ( ( x e. ZZ /\ y e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) ) -> K || ( ( x x. M ) + ( y x. N ) ) ) |
| 5 | 4 | 3coml | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> K || ( ( x x. M ) + ( y x. N ) ) ) |
| 6 | simp3l | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
|
| 7 | simp12 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> M e. ZZ ) |
|
| 8 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 9 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 10 | mulcom | |- ( ( x e. CC /\ M e. CC ) -> ( x x. M ) = ( M x. x ) ) |
|
| 11 | 8 9 10 | syl2an | |- ( ( x e. ZZ /\ M e. ZZ ) -> ( x x. M ) = ( M x. x ) ) |
| 12 | 6 7 11 | syl2anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. M ) = ( M x. x ) ) |
| 13 | simp3r | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
|
| 14 | simp13 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N e. ZZ ) |
|
| 15 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 16 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 17 | mulcom | |- ( ( y e. CC /\ N e. CC ) -> ( y x. N ) = ( N x. y ) ) |
|
| 18 | 15 16 17 | syl2an | |- ( ( y e. ZZ /\ N e. ZZ ) -> ( y x. N ) = ( N x. y ) ) |
| 19 | 13 14 18 | syl2anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( y x. N ) = ( N x. y ) ) |
| 20 | 12 19 | oveq12d | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. M ) + ( y x. N ) ) = ( ( M x. x ) + ( N x. y ) ) ) |
| 21 | 5 20 | breqtrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> K || ( ( M x. x ) + ( N x. y ) ) ) |
| 22 | breq2 | |- ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( K || ( M gcd N ) <-> K || ( ( M x. x ) + ( N x. y ) ) ) ) |
|
| 23 | 21 22 | syl5ibrcom | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> K || ( M gcd N ) ) ) |
| 24 | 23 | 3expia | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) ) -> ( ( x e. ZZ /\ y e. ZZ ) -> ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> K || ( M gcd N ) ) ) ) |
| 25 | 24 | rexlimdvv | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) ) -> ( E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> K || ( M gcd N ) ) ) |
| 26 | 25 | ex | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> ( E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> K || ( M gcd N ) ) ) ) |
| 27 | 2 26 | mpid | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> K || ( M gcd N ) ) ) |