This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmultr1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || M -> K || ( M x. N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsmul1 | |- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M x. N ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M || ( M x. N ) ) |
| 3 | zmulcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
|
| 4 | 3 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
| 5 | dvdstr | |- ( ( K e. ZZ /\ M e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( K || M /\ M || ( M x. N ) ) -> K || ( M x. N ) ) ) |
|
| 6 | 4 5 | syld3an3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ M || ( M x. N ) ) -> K || ( M x. N ) ) ) |
| 7 | 2 6 | mpan2d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || M -> K || ( M x. N ) ) ) |