This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014) (Revised by Mario Carneiro, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsexp | |- ( ( P e. Prime /\ A e. ZZ /\ N e. NN ) -> ( P || ( A ^ N ) <-> P || A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( m = 1 -> ( A ^ m ) = ( A ^ 1 ) ) |
|
| 2 | 1 | breq2d | |- ( m = 1 -> ( P || ( A ^ m ) <-> P || ( A ^ 1 ) ) ) |
| 3 | 2 | bibi1d | |- ( m = 1 -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ 1 ) <-> P || A ) ) ) |
| 4 | 3 | imbi2d | |- ( m = 1 -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ 1 ) <-> P || A ) ) ) ) |
| 5 | oveq2 | |- ( m = k -> ( A ^ m ) = ( A ^ k ) ) |
|
| 6 | 5 | breq2d | |- ( m = k -> ( P || ( A ^ m ) <-> P || ( A ^ k ) ) ) |
| 7 | 6 | bibi1d | |- ( m = k -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ k ) <-> P || A ) ) ) |
| 8 | 7 | imbi2d | |- ( m = k -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ k ) <-> P || A ) ) ) ) |
| 9 | oveq2 | |- ( m = ( k + 1 ) -> ( A ^ m ) = ( A ^ ( k + 1 ) ) ) |
|
| 10 | 9 | breq2d | |- ( m = ( k + 1 ) -> ( P || ( A ^ m ) <-> P || ( A ^ ( k + 1 ) ) ) ) |
| 11 | 10 | bibi1d | |- ( m = ( k + 1 ) -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) |
| 12 | 11 | imbi2d | |- ( m = ( k + 1 ) -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) ) |
| 13 | oveq2 | |- ( m = N -> ( A ^ m ) = ( A ^ N ) ) |
|
| 14 | 13 | breq2d | |- ( m = N -> ( P || ( A ^ m ) <-> P || ( A ^ N ) ) ) |
| 15 | 14 | bibi1d | |- ( m = N -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ N ) <-> P || A ) ) ) |
| 16 | 15 | imbi2d | |- ( m = N -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ N ) <-> P || A ) ) ) ) |
| 17 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 18 | 17 | adantl | |- ( ( P e. Prime /\ A e. ZZ ) -> A e. CC ) |
| 19 | 18 | exp1d | |- ( ( P e. Prime /\ A e. ZZ ) -> ( A ^ 1 ) = A ) |
| 20 | 19 | breq2d | |- ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ 1 ) <-> P || A ) ) |
| 21 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 22 | expp1 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
|
| 23 | 18 21 22 | syl2an | |- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 24 | 23 | breq2d | |- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || ( ( A ^ k ) x. A ) ) ) |
| 25 | simpll | |- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> P e. Prime ) |
|
| 26 | simpr | |- ( ( P e. Prime /\ A e. ZZ ) -> A e. ZZ ) |
|
| 27 | zexpcl | |- ( ( A e. ZZ /\ k e. NN0 ) -> ( A ^ k ) e. ZZ ) |
|
| 28 | 26 21 27 | syl2an | |- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( A ^ k ) e. ZZ ) |
| 29 | simplr | |- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> A e. ZZ ) |
|
| 30 | euclemma | |- ( ( P e. Prime /\ ( A ^ k ) e. ZZ /\ A e. ZZ ) -> ( P || ( ( A ^ k ) x. A ) <-> ( P || ( A ^ k ) \/ P || A ) ) ) |
|
| 31 | 25 28 29 30 | syl3anc | |- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( P || ( ( A ^ k ) x. A ) <-> ( P || ( A ^ k ) \/ P || A ) ) ) |
| 32 | 24 31 | bitrd | |- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( P || ( A ^ ( k + 1 ) ) <-> ( P || ( A ^ k ) \/ P || A ) ) ) |
| 33 | orbi1 | |- ( ( P || ( A ^ k ) <-> P || A ) -> ( ( P || ( A ^ k ) \/ P || A ) <-> ( P || A \/ P || A ) ) ) |
|
| 34 | oridm | |- ( ( P || A \/ P || A ) <-> P || A ) |
|
| 35 | 33 34 | bitrdi | |- ( ( P || ( A ^ k ) <-> P || A ) -> ( ( P || ( A ^ k ) \/ P || A ) <-> P || A ) ) |
| 36 | 35 | bibi2d | |- ( ( P || ( A ^ k ) <-> P || A ) -> ( ( P || ( A ^ ( k + 1 ) ) <-> ( P || ( A ^ k ) \/ P || A ) ) <-> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) |
| 37 | 32 36 | syl5ibcom | |- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( ( P || ( A ^ k ) <-> P || A ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) |
| 38 | 37 | expcom | |- ( k e. NN -> ( ( P e. Prime /\ A e. ZZ ) -> ( ( P || ( A ^ k ) <-> P || A ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) ) |
| 39 | 38 | a2d | |- ( k e. NN -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ k ) <-> P || A ) ) -> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) ) |
| 40 | 4 8 12 16 20 39 | nnind | |- ( N e. NN -> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ N ) <-> P || A ) ) ) |
| 41 | 40 | impcom | |- ( ( ( P e. Prime /\ A e. ZZ ) /\ N e. NN ) -> ( P || ( A ^ N ) <-> P || A ) ) |
| 42 | 41 | 3impa | |- ( ( P e. Prime /\ A e. ZZ /\ N e. NN ) -> ( P || ( A ^ N ) <-> P || A ) ) |