This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Parameterize the Pythagorean triples. If A , B , and C are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml . This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtrip | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <-> E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divgcdodd | |- ( ( A e. NN /\ B e. NN ) -> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |
| 3 | 2 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |
| 4 | pythagtriplem19 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
|
| 5 | 4 | 3expia | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( -. 2 || ( A / ( A gcd B ) ) -> E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 6 | simp12 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> B e. NN ) |
|
| 7 | simp11 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> A e. NN ) |
|
| 8 | simp13 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> C e. NN ) |
|
| 9 | nnsqcl | |- ( A e. NN -> ( A ^ 2 ) e. NN ) |
|
| 10 | 9 | nncnd | |- ( A e. NN -> ( A ^ 2 ) e. CC ) |
| 11 | 10 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. CC ) |
| 12 | nnsqcl | |- ( B e. NN -> ( B ^ 2 ) e. NN ) |
|
| 13 | 12 | nncnd | |- ( B e. NN -> ( B ^ 2 ) e. CC ) |
| 14 | 13 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. CC ) |
| 15 | 11 14 | addcomd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
| 16 | 15 | eqeq1d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <-> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( C ^ 2 ) ) ) |
| 17 | 16 | biimpa | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( C ^ 2 ) ) |
| 18 | 17 | 3adant3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( C ^ 2 ) ) |
| 19 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 20 | 19 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 21 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 22 | 21 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) |
| 23 | 22 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> B e. ZZ ) |
| 24 | gcdcom | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
|
| 25 | 20 23 24 | syl2an2r | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( A gcd B ) = ( B gcd A ) ) |
| 26 | 25 | oveq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( B / ( A gcd B ) ) = ( B / ( B gcd A ) ) ) |
| 27 | 26 | breq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( 2 || ( B / ( A gcd B ) ) <-> 2 || ( B / ( B gcd A ) ) ) ) |
| 28 | 27 | notbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( -. 2 || ( B / ( A gcd B ) ) <-> -. 2 || ( B / ( B gcd A ) ) ) ) |
| 29 | 28 | biimp3a | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> -. 2 || ( B / ( B gcd A ) ) ) |
| 30 | pythagtriplem19 | |- ( ( ( B e. NN /\ A e. NN /\ C e. NN ) /\ ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( B gcd A ) ) ) -> E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
|
| 31 | 6 7 8 18 29 30 | syl311anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
| 32 | 31 | 3expia | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( -. 2 || ( B / ( A gcd B ) ) -> E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 33 | 5 32 | orim12d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) -> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) |
| 34 | 3 33 | mpd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 35 | ovex | |- ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) e. _V |
|
| 36 | ovex | |- ( k x. ( 2 x. ( m x. n ) ) ) e. _V |
|
| 37 | preq12bg | |- ( ( ( A e. NN /\ B e. NN ) /\ ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) e. _V /\ ( k x. ( 2 x. ( m x. n ) ) ) e. _V ) ) -> ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) ) ) |
|
| 38 | 35 36 37 | mpanr12 | |- ( ( A e. NN /\ B e. NN ) -> ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) ) ) |
| 39 | 38 | anbi1d | |- ( ( A e. NN /\ B e. NN ) -> ( ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 40 | 39 | rexbidv | |- ( ( A e. NN /\ B e. NN ) -> ( E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. k e. NN ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 41 | 40 | 2rexbidv | |- ( ( A e. NN /\ B e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. n e. NN E. m e. NN E. k e. NN ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 42 | andir | |- ( ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
|
| 43 | df-3an | |- ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
|
| 44 | df-3an | |- ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
|
| 45 | 43 44 | orbi12i | |- ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 46 | 3ancoma | |- ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
|
| 47 | 46 | orbi2i | |- ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 48 | 42 45 47 | 3bitr2i | |- ( ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 49 | 48 | rexbii | |- ( E. k e. NN ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 50 | 49 | 2rexbii | |- ( E. n e. NN E. m e. NN E. k e. NN ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. n e. NN E. m e. NN E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 51 | r19.43 | |- ( E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
|
| 52 | 51 | 2rexbii | |- ( E. n e. NN E. m e. NN E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> E. n e. NN E. m e. NN ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 53 | r19.43 | |- ( E. m e. NN ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
|
| 54 | 53 | rexbii | |- ( E. n e. NN E. m e. NN ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> E. n e. NN ( E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 55 | r19.43 | |- ( E. n e. NN ( E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
|
| 56 | 54 55 | bitri | |- ( E. n e. NN E. m e. NN ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 57 | 52 56 | bitri | |- ( E. n e. NN E. m e. NN E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 58 | 50 57 | bitri | |- ( E. n e. NN E. m e. NN E. k e. NN ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 59 | 41 58 | bitrdi | |- ( ( A e. NN /\ B e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) |
| 60 | 59 | 3adant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) |
| 61 | 60 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) |
| 62 | 34 61 | mpbird | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
| 63 | 62 | ex | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 64 | pythagtriplem2 | |- ( ( A e. NN /\ B e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) |
|
| 65 | 64 | 3adant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) |
| 66 | 63 65 | impbid | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <-> E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |