This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppncan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + ( C - B ) ) = ( A + C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcom | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + B ) = ( B + A ) ) |
| 3 | 2 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( B - C ) ) = ( ( B + A ) - ( B - C ) ) ) |
| 4 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 5 | 4 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + B ) e. CC ) |
| 6 | subsub2 | |- ( ( ( A + B ) e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( B - C ) ) = ( ( A + B ) + ( C - B ) ) ) |
|
| 7 | 5 6 | syld3an1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( B - C ) ) = ( ( A + B ) + ( C - B ) ) ) |
| 8 | pnncan | |- ( ( B e. CC /\ A e. CC /\ C e. CC ) -> ( ( B + A ) - ( B - C ) ) = ( A + C ) ) |
|
| 9 | 8 | 3com12 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B + A ) - ( B - C ) ) = ( A + C ) ) |
| 10 | 3 7 9 | 3eqtr3d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + ( C - B ) ) = ( A + C ) ) |