This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show that C - B and C + B are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem4 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ 𝐴 ) | |
| 2 | nnz | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) | |
| 3 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 4 | zsubcl | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) | |
| 5 | 2 3 4 | syl2anr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 8 | simp13 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 ∈ ℕ ) | |
| 9 | simp12 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℕ ) | |
| 10 | 8 9 | nnaddcld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ∈ ℕ ) |
| 11 | 10 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 12 | gcddvds | ⊢ ( ( ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 + 𝐵 ) ) ) | |
| 13 | 7 11 12 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 + 𝐵 ) ) ) |
| 14 | 13 | simprd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 + 𝐵 ) ) |
| 15 | breq1 | ⊢ ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 + 𝐵 ) ↔ 2 ∥ ( 𝐶 + 𝐵 ) ) ) | |
| 16 | 15 | biimpd | ⊢ ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 + 𝐵 ) → 2 ∥ ( 𝐶 + 𝐵 ) ) ) |
| 17 | 14 16 | mpan9 | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 2 ∥ ( 𝐶 + 𝐵 ) ) |
| 18 | 2z | ⊢ 2 ∈ ℤ | |
| 19 | simpl13 | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐶 ∈ ℕ ) | |
| 20 | 19 | nnzd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐶 ∈ ℤ ) |
| 21 | simpl12 | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐵 ∈ ℕ ) | |
| 22 | 21 | nnzd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐵 ∈ ℤ ) |
| 23 | 20 22 | zaddcld | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 24 | 20 22 | zsubcld | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 25 | dvdsmultr1 | ⊢ ( ( 2 ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ∧ ( 𝐶 − 𝐵 ) ∈ ℤ ) → ( 2 ∥ ( 𝐶 + 𝐵 ) → 2 ∥ ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) ) | |
| 26 | 18 23 24 25 | mp3an2i | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 2 ∥ ( 𝐶 + 𝐵 ) → 2 ∥ ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) ) |
| 27 | 17 26 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 2 ∥ ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) |
| 28 | 19 | nncnd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐶 ∈ ℂ ) |
| 29 | 21 | nncnd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐵 ∈ ℂ ) |
| 30 | subsq | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) | |
| 31 | 28 29 30 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) |
| 32 | 27 31 | breqtrrd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 2 ∥ ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 33 | simpl2 | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) | |
| 34 | 33 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 35 | simpl11 | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐴 ∈ ℕ ) | |
| 36 | 35 | nnsqcld | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
| 37 | 36 | nncnd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 38 | 21 | nnsqcld | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
| 39 | 38 | nncnd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 40 | 37 39 | pncand | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 41 | 34 40 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 42 | 32 41 | breqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 2 ∥ ( 𝐴 ↑ 2 ) ) |
| 43 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 44 | 43 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 45 | 44 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐴 ∈ ℤ ) |
| 46 | 45 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐴 ∈ ℤ ) |
| 47 | 2prm | ⊢ 2 ∈ ℙ | |
| 48 | 2nn | ⊢ 2 ∈ ℕ | |
| 49 | prmdvdsexp | ⊢ ( ( 2 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 2 ∥ ( 𝐴 ↑ 2 ) ↔ 2 ∥ 𝐴 ) ) | |
| 50 | 47 48 49 | mp3an13 | ⊢ ( 𝐴 ∈ ℤ → ( 2 ∥ ( 𝐴 ↑ 2 ) ↔ 2 ∥ 𝐴 ) ) |
| 51 | 46 50 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 2 ∥ ( 𝐴 ↑ 2 ) ↔ 2 ∥ 𝐴 ) ) |
| 52 | 42 51 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 2 ∥ 𝐴 ) |
| 53 | 1 52 | mtand | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) |
| 54 | neg1z | ⊢ - 1 ∈ ℤ | |
| 55 | gcdaddm | ⊢ ( ( - 1 ∈ ℤ ∧ ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) ) ) | |
| 56 | 54 7 11 55 | mp3an2i | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) ) ) |
| 57 | 8 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 58 | 9 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 59 | pnncan | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) − ( 𝐶 − 𝐵 ) ) = ( 𝐵 + 𝐵 ) ) | |
| 60 | 59 | 3anidm23 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) − ( 𝐶 − 𝐵 ) ) = ( 𝐵 + 𝐵 ) ) |
| 61 | subcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) | |
| 62 | 61 | mulm1d | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 1 · ( 𝐶 − 𝐵 ) ) = - ( 𝐶 − 𝐵 ) ) |
| 63 | 62 | oveq2d | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) = ( ( 𝐶 + 𝐵 ) + - ( 𝐶 − 𝐵 ) ) ) |
| 64 | addcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 + 𝐵 ) ∈ ℂ ) | |
| 65 | 64 61 | negsubd | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + - ( 𝐶 − 𝐵 ) ) = ( ( 𝐶 + 𝐵 ) − ( 𝐶 − 𝐵 ) ) ) |
| 66 | 63 65 | eqtrd | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) = ( ( 𝐶 + 𝐵 ) − ( 𝐶 − 𝐵 ) ) ) |
| 67 | 2times | ⊢ ( 𝐵 ∈ ℂ → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) | |
| 68 | 67 | adantl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
| 69 | 60 66 68 | 3eqtr4d | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) = ( 2 · 𝐵 ) ) |
| 70 | 69 | oveq2d | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) ) = ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ) |
| 71 | 57 58 70 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) ) = ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ) |
| 72 | 56 71 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ) |
| 73 | 9 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℤ ) |
| 74 | zmulcl | ⊢ ( ( 2 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 · 𝐵 ) ∈ ℤ ) | |
| 75 | 18 73 74 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · 𝐵 ) ∈ ℤ ) |
| 76 | gcddvds | ⊢ ( ( ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 2 · 𝐵 ) ∈ ℤ ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ∥ ( 2 · 𝐵 ) ) ) | |
| 77 | 7 75 76 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ∥ ( 2 · 𝐵 ) ) ) |
| 78 | 77 | simprd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ∥ ( 2 · 𝐵 ) ) |
| 79 | 72 78 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐵 ) ) |
| 80 | 1z | ⊢ 1 ∈ ℤ | |
| 81 | gcdaddm | ⊢ ( ( 1 ∈ ℤ ∧ ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) ) ) | |
| 82 | 80 7 11 81 | mp3an2i | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) ) ) |
| 83 | ppncan | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 𝐶 + 𝐶 ) ) | |
| 84 | 83 | 3anidm13 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 𝐶 + 𝐶 ) ) |
| 85 | 61 | mullidd | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · ( 𝐶 − 𝐵 ) ) = ( 𝐶 − 𝐵 ) ) |
| 86 | 85 | oveq2d | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) = ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) ) |
| 87 | 2times | ⊢ ( 𝐶 ∈ ℂ → ( 2 · 𝐶 ) = ( 𝐶 + 𝐶 ) ) | |
| 88 | 87 | adantr | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · 𝐶 ) = ( 𝐶 + 𝐶 ) ) |
| 89 | 84 86 88 | 3eqtr4d | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) = ( 2 · 𝐶 ) ) |
| 90 | 57 58 89 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) = ( 2 · 𝐶 ) ) |
| 91 | 90 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) ) = ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ) |
| 92 | 82 91 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ) |
| 93 | 8 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 ∈ ℤ ) |
| 94 | zmulcl | ⊢ ( ( 2 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 2 · 𝐶 ) ∈ ℤ ) | |
| 95 | 18 93 94 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · 𝐶 ) ∈ ℤ ) |
| 96 | gcddvds | ⊢ ( ( ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 2 · 𝐶 ) ∈ ℤ ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ∥ ( 2 · 𝐶 ) ) ) | |
| 97 | 7 95 96 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ∥ ( 2 · 𝐶 ) ) ) |
| 98 | 97 | simprd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ∥ ( 2 · 𝐶 ) ) |
| 99 | 92 98 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐶 ) ) |
| 100 | nnaddcl | ⊢ ( ( 𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ∈ ℕ ) | |
| 101 | 100 | nnne0d | ⊢ ( ( 𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ≠ 0 ) |
| 102 | 101 | ancoms | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ≠ 0 ) |
| 103 | 102 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ≠ 0 ) |
| 104 | 103 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ≠ 0 ) |
| 105 | 104 | neneqd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ ( 𝐶 + 𝐵 ) = 0 ) |
| 106 | 105 | intnand | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ ( ( 𝐶 − 𝐵 ) = 0 ∧ ( 𝐶 + 𝐵 ) = 0 ) ) |
| 107 | gcdn0cl | ⊢ ( ( ( ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ) ∧ ¬ ( ( 𝐶 − 𝐵 ) = 0 ∧ ( 𝐶 + 𝐵 ) = 0 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∈ ℕ ) | |
| 108 | 7 11 106 107 | syl21anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∈ ℕ ) |
| 109 | 108 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∈ ℤ ) |
| 110 | dvdsgcd | ⊢ ( ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∈ ℤ ∧ ( 2 · 𝐵 ) ∈ ℤ ∧ ( 2 · 𝐶 ) ∈ ℤ ) → ( ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐶 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) ) ) | |
| 111 | 109 75 95 110 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐶 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) ) ) |
| 112 | 79 99 111 | mp2and | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) ) |
| 113 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 114 | mulgcd | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) = ( 2 · ( 𝐵 gcd 𝐶 ) ) ) | |
| 115 | 113 73 93 114 | mp3an2i | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) = ( 2 · ( 𝐵 gcd 𝐶 ) ) ) |
| 116 | pythagtriplem3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐵 gcd 𝐶 ) = 1 ) | |
| 117 | 116 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · ( 𝐵 gcd 𝐶 ) ) = ( 2 · 1 ) ) |
| 118 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 119 | 117 118 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · ( 𝐵 gcd 𝐶 ) ) = 2 ) |
| 120 | 115 119 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) = 2 ) |
| 121 | 112 120 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ 2 ) |
| 122 | dvdsprime | ⊢ ( ( 2 ∈ ℙ ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∈ ℕ ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ 2 ↔ ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ∨ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) ) ) | |
| 123 | 47 108 122 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ 2 ↔ ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ∨ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) ) ) |
| 124 | 121 123 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ∨ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) ) |
| 125 | orel1 | ⊢ ( ¬ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 → ( ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ∨ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) ) | |
| 126 | 53 124 125 | sylc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) |