This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pnncan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( A - C ) ) = ( B + C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 2 | simp2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
|
| 3 | 1 2 | addcld | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + B ) e. CC ) |
| 4 | simp3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 5 | subsub | |- ( ( ( A + B ) e. CC /\ A e. CC /\ C e. CC ) -> ( ( A + B ) - ( A - C ) ) = ( ( ( A + B ) - A ) + C ) ) |
|
| 6 | 3 1 4 5 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( A - C ) ) = ( ( ( A + B ) - A ) + C ) ) |
| 7 | pncan2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - A ) = B ) |
|
| 8 | 7 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - A ) = B ) |
| 9 | 8 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A + B ) - A ) + C ) = ( B + C ) ) |
| 10 | 6 9 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( A - C ) ) = ( B + C ) ) |