This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show that C and B are relatively prime under some conditions. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B gcd C ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) |
|
| 2 | 1 | adantl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) |
| 3 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 4 | zsqcl | |- ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) |
|
| 5 | 3 4 | syl | |- ( B e. NN -> ( B ^ 2 ) e. ZZ ) |
| 6 | 5 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. ZZ ) |
| 7 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 8 | zsqcl | |- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
|
| 9 | 7 8 | syl | |- ( A e. NN -> ( A ^ 2 ) e. ZZ ) |
| 10 | 9 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. ZZ ) |
| 11 | gcdadd | |- ( ( ( B ^ 2 ) e. ZZ /\ ( A ^ 2 ) e. ZZ ) -> ( ( B ^ 2 ) gcd ( A ^ 2 ) ) = ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
|
| 12 | 6 10 11 | syl2anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( B ^ 2 ) gcd ( A ^ 2 ) ) = ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
| 13 | 6 10 | gcdcomd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( B ^ 2 ) gcd ( A ^ 2 ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 14 | 12 13 | eqtr3d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 15 | 14 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 16 | 2 15 | eqtr3d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B ^ 2 ) gcd ( C ^ 2 ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 17 | simpl2 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> B e. NN ) |
|
| 18 | simpl3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> C e. NN ) |
|
| 19 | sqgcd | |- ( ( B e. NN /\ C e. NN ) -> ( ( B gcd C ) ^ 2 ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) |
|
| 20 | 17 18 19 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B gcd C ) ^ 2 ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) |
| 21 | simpl1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> A e. NN ) |
|
| 22 | sqgcd | |- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
|
| 23 | 21 17 22 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 24 | 16 20 23 | 3eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B gcd C ) ^ 2 ) = ( ( A gcd B ) ^ 2 ) ) |
| 25 | 24 | 3adant3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( B gcd C ) ^ 2 ) = ( ( A gcd B ) ^ 2 ) ) |
| 26 | simp3l | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A gcd B ) = 1 ) |
|
| 27 | 26 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( A gcd B ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 28 | 25 27 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 29 | 3 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) |
| 30 | nnz | |- ( C e. NN -> C e. ZZ ) |
|
| 31 | 30 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) |
| 32 | 29 31 | gcdcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B gcd C ) e. NN0 ) |
| 33 | 32 | nn0red | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B gcd C ) e. RR ) |
| 34 | 33 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B gcd C ) e. RR ) |
| 35 | 32 | nn0ge0d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ ( B gcd C ) ) |
| 36 | 35 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( B gcd C ) ) |
| 37 | 1re | |- 1 e. RR |
|
| 38 | 0le1 | |- 0 <_ 1 |
|
| 39 | sq11 | |- ( ( ( ( B gcd C ) e. RR /\ 0 <_ ( B gcd C ) ) /\ ( 1 e. RR /\ 0 <_ 1 ) ) -> ( ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) <-> ( B gcd C ) = 1 ) ) |
|
| 40 | 37 38 39 | mpanr12 | |- ( ( ( B gcd C ) e. RR /\ 0 <_ ( B gcd C ) ) -> ( ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) <-> ( B gcd C ) = 1 ) ) |
| 41 | 34 36 40 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) <-> ( B gcd C ) = 1 ) ) |
| 42 | 28 41 | mpbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B gcd C ) = 1 ) |