This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmulcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 | |- ( M e. ZZ <-> ( M e. RR /\ ( M e. NN0 \/ -u M e. NN0 ) ) ) |
|
| 2 | elznn0 | |- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
|
| 3 | nn0mulcl | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M x. N ) e. NN0 ) |
|
| 4 | 3 | orcd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) |
| 5 | 4 | a1i | |- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
| 6 | remulcl | |- ( ( M e. RR /\ N e. RR ) -> ( M x. N ) e. RR ) |
|
| 7 | 5 6 | jctild | |- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
| 8 | nn0mulcl | |- ( ( -u M e. NN0 /\ N e. NN0 ) -> ( -u M x. N ) e. NN0 ) |
|
| 9 | recn | |- ( M e. RR -> M e. CC ) |
|
| 10 | recn | |- ( N e. RR -> N e. CC ) |
|
| 11 | mulneg1 | |- ( ( M e. CC /\ N e. CC ) -> ( -u M x. N ) = -u ( M x. N ) ) |
|
| 12 | 9 10 11 | syl2an | |- ( ( M e. RR /\ N e. RR ) -> ( -u M x. N ) = -u ( M x. N ) ) |
| 13 | 12 | eleq1d | |- ( ( M e. RR /\ N e. RR ) -> ( ( -u M x. N ) e. NN0 <-> -u ( M x. N ) e. NN0 ) ) |
| 14 | 8 13 | imbitrid | |- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ N e. NN0 ) -> -u ( M x. N ) e. NN0 ) ) |
| 15 | olc | |- ( -u ( M x. N ) e. NN0 -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) |
|
| 16 | 14 15 | syl6 | |- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
| 17 | 16 6 | jctild | |- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
| 18 | nn0mulcl | |- ( ( M e. NN0 /\ -u N e. NN0 ) -> ( M x. -u N ) e. NN0 ) |
|
| 19 | mulneg2 | |- ( ( M e. CC /\ N e. CC ) -> ( M x. -u N ) = -u ( M x. N ) ) |
|
| 20 | 9 10 19 | syl2an | |- ( ( M e. RR /\ N e. RR ) -> ( M x. -u N ) = -u ( M x. N ) ) |
| 21 | 20 | eleq1d | |- ( ( M e. RR /\ N e. RR ) -> ( ( M x. -u N ) e. NN0 <-> -u ( M x. N ) e. NN0 ) ) |
| 22 | 18 21 | imbitrid | |- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ -u N e. NN0 ) -> -u ( M x. N ) e. NN0 ) ) |
| 23 | 22 15 | syl6 | |- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
| 24 | 23 6 | jctild | |- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
| 25 | nn0mulcl | |- ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( -u M x. -u N ) e. NN0 ) |
|
| 26 | mul2neg | |- ( ( M e. CC /\ N e. CC ) -> ( -u M x. -u N ) = ( M x. N ) ) |
|
| 27 | 9 10 26 | syl2an | |- ( ( M e. RR /\ N e. RR ) -> ( -u M x. -u N ) = ( M x. N ) ) |
| 28 | 27 | eleq1d | |- ( ( M e. RR /\ N e. RR ) -> ( ( -u M x. -u N ) e. NN0 <-> ( M x. N ) e. NN0 ) ) |
| 29 | 25 28 | imbitrid | |- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( M x. N ) e. NN0 ) ) |
| 30 | orc | |- ( ( M x. N ) e. NN0 -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) |
|
| 31 | 29 30 | syl6 | |- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
| 32 | 31 6 | jctild | |- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
| 33 | 7 17 24 32 | ccased | |- ( ( M e. RR /\ N e. RR ) -> ( ( ( M e. NN0 \/ -u M e. NN0 ) /\ ( N e. NN0 \/ -u N e. NN0 ) ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
| 34 | elznn0 | |- ( ( M x. N ) e. ZZ <-> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
|
| 35 | 33 34 | imbitrrdi | |- ( ( M e. RR /\ N e. RR ) -> ( ( ( M e. NN0 \/ -u M e. NN0 ) /\ ( N e. NN0 \/ -u N e. NN0 ) ) -> ( M x. N ) e. ZZ ) ) |
| 36 | 35 | imp | |- ( ( ( M e. RR /\ N e. RR ) /\ ( ( M e. NN0 \/ -u M e. NN0 ) /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) -> ( M x. N ) e. ZZ ) |
| 37 | 36 | an4s | |- ( ( ( M e. RR /\ ( M e. NN0 \/ -u M e. NN0 ) ) /\ ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) -> ( M x. N ) e. ZZ ) |
| 38 | 1 2 37 | syl2anb | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |