This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If M divides a prime, then M is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsprime | |- ( ( P e. Prime /\ M e. NN ) -> ( M || P <-> ( M = P \/ M = 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm2 | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. m e. NN ( m || P -> ( m = 1 \/ m = P ) ) ) ) |
|
| 2 | breq1 | |- ( m = M -> ( m || P <-> M || P ) ) |
|
| 3 | eqeq1 | |- ( m = M -> ( m = 1 <-> M = 1 ) ) |
|
| 4 | eqeq1 | |- ( m = M -> ( m = P <-> M = P ) ) |
|
| 5 | 3 4 | orbi12d | |- ( m = M -> ( ( m = 1 \/ m = P ) <-> ( M = 1 \/ M = P ) ) ) |
| 6 | orcom | |- ( ( M = 1 \/ M = P ) <-> ( M = P \/ M = 1 ) ) |
|
| 7 | 5 6 | bitrdi | |- ( m = M -> ( ( m = 1 \/ m = P ) <-> ( M = P \/ M = 1 ) ) ) |
| 8 | 2 7 | imbi12d | |- ( m = M -> ( ( m || P -> ( m = 1 \/ m = P ) ) <-> ( M || P -> ( M = P \/ M = 1 ) ) ) ) |
| 9 | 8 | rspccva | |- ( ( A. m e. NN ( m || P -> ( m = 1 \/ m = P ) ) /\ M e. NN ) -> ( M || P -> ( M = P \/ M = 1 ) ) ) |
| 10 | 9 | adantll | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ A. m e. NN ( m || P -> ( m = 1 \/ m = P ) ) ) /\ M e. NN ) -> ( M || P -> ( M = P \/ M = 1 ) ) ) |
| 11 | 1 10 | sylanb | |- ( ( P e. Prime /\ M e. NN ) -> ( M || P -> ( M = P \/ M = 1 ) ) ) |
| 12 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 13 | iddvds | |- ( P e. ZZ -> P || P ) |
|
| 14 | 12 13 | syl | |- ( P e. Prime -> P || P ) |
| 15 | 14 | adantr | |- ( ( P e. Prime /\ M e. NN ) -> P || P ) |
| 16 | breq1 | |- ( M = P -> ( M || P <-> P || P ) ) |
|
| 17 | 15 16 | syl5ibrcom | |- ( ( P e. Prime /\ M e. NN ) -> ( M = P -> M || P ) ) |
| 18 | 1dvds | |- ( P e. ZZ -> 1 || P ) |
|
| 19 | 12 18 | syl | |- ( P e. Prime -> 1 || P ) |
| 20 | 19 | adantr | |- ( ( P e. Prime /\ M e. NN ) -> 1 || P ) |
| 21 | breq1 | |- ( M = 1 -> ( M || P <-> 1 || P ) ) |
|
| 22 | 20 21 | syl5ibrcom | |- ( ( P e. Prime /\ M e. NN ) -> ( M = 1 -> M || P ) ) |
| 23 | 17 22 | jaod | |- ( ( P e. Prime /\ M e. NN ) -> ( ( M = P \/ M = 1 ) -> M || P ) ) |
| 24 | 11 23 | impbid | |- ( ( P e. Prime /\ M e. NN ) -> ( M || P <-> ( M = P \/ M = 1 ) ) ) |