This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulgcd | |- ( ( K e. NN0 /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( K x. ( M gcd N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( K e. NN0 <-> ( K e. NN \/ K = 0 ) ) |
|
| 2 | simp1 | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> K e. NN ) |
|
| 3 | 2 | nnzd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) |
| 4 | simp2 | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
|
| 5 | 3 4 | zmulcld | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K x. M ) e. ZZ ) |
| 6 | simp3 | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
|
| 7 | 3 6 | zmulcld | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
| 8 | 5 7 | gcdcld | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) e. NN0 ) |
| 9 | 2 | nnnn0d | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> K e. NN0 ) |
| 10 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
| 11 | 10 | 3adant1 | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
| 12 | 9 11 | nn0mulcld | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K x. ( M gcd N ) ) e. NN0 ) |
| 13 | 8 | nn0cnd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) e. CC ) |
| 14 | 2 | nncnd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> K e. CC ) |
| 15 | 2 | nnne0d | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> K =/= 0 ) |
| 16 | 13 14 15 | divcan2d | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K x. ( ( ( K x. M ) gcd ( K x. N ) ) / K ) ) = ( ( K x. M ) gcd ( K x. N ) ) ) |
| 17 | gcddvds | |- ( ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) -> ( ( ( K x. M ) gcd ( K x. N ) ) || ( K x. M ) /\ ( ( K x. M ) gcd ( K x. N ) ) || ( K x. N ) ) ) |
|
| 18 | 5 7 17 | syl2anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K x. M ) gcd ( K x. N ) ) || ( K x. M ) /\ ( ( K x. M ) gcd ( K x. N ) ) || ( K x. N ) ) ) |
| 19 | 18 | simpld | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) || ( K x. M ) ) |
| 20 | 16 19 | eqbrtrd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K x. ( ( ( K x. M ) gcd ( K x. N ) ) / K ) ) || ( K x. M ) ) |
| 21 | dvdsmul1 | |- ( ( K e. ZZ /\ M e. ZZ ) -> K || ( K x. M ) ) |
|
| 22 | 3 4 21 | syl2anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> K || ( K x. M ) ) |
| 23 | dvdsmul1 | |- ( ( K e. ZZ /\ N e. ZZ ) -> K || ( K x. N ) ) |
|
| 24 | 3 6 23 | syl2anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> K || ( K x. N ) ) |
| 25 | dvdsgcd | |- ( ( K e. ZZ /\ ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) -> ( ( K || ( K x. M ) /\ K || ( K x. N ) ) -> K || ( ( K x. M ) gcd ( K x. N ) ) ) ) |
|
| 26 | 3 5 7 25 | syl3anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( K x. M ) /\ K || ( K x. N ) ) -> K || ( ( K x. M ) gcd ( K x. N ) ) ) ) |
| 27 | 22 24 26 | mp2and | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> K || ( ( K x. M ) gcd ( K x. N ) ) ) |
| 28 | 8 | nn0zd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) e. ZZ ) |
| 29 | dvdsval2 | |- ( ( K e. ZZ /\ K =/= 0 /\ ( ( K x. M ) gcd ( K x. N ) ) e. ZZ ) -> ( K || ( ( K x. M ) gcd ( K x. N ) ) <-> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) e. ZZ ) ) |
|
| 30 | 3 15 28 29 | syl3anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K || ( ( K x. M ) gcd ( K x. N ) ) <-> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) e. ZZ ) ) |
| 31 | 27 30 | mpbid | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) e. ZZ ) |
| 32 | dvdscmulr | |- ( ( ( ( ( K x. M ) gcd ( K x. N ) ) / K ) e. ZZ /\ M e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. ( ( ( K x. M ) gcd ( K x. N ) ) / K ) ) || ( K x. M ) <-> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || M ) ) |
|
| 33 | 31 4 3 15 32 | syl112anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. ( ( ( K x. M ) gcd ( K x. N ) ) / K ) ) || ( K x. M ) <-> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || M ) ) |
| 34 | 20 33 | mpbid | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || M ) |
| 35 | 18 | simprd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) || ( K x. N ) ) |
| 36 | 16 35 | eqbrtrd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K x. ( ( ( K x. M ) gcd ( K x. N ) ) / K ) ) || ( K x. N ) ) |
| 37 | dvdscmulr | |- ( ( ( ( ( K x. M ) gcd ( K x. N ) ) / K ) e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. ( ( ( K x. M ) gcd ( K x. N ) ) / K ) ) || ( K x. N ) <-> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || N ) ) |
|
| 38 | 31 6 3 15 37 | syl112anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. ( ( ( K x. M ) gcd ( K x. N ) ) / K ) ) || ( K x. N ) <-> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || N ) ) |
| 39 | 36 38 | mpbid | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || N ) |
| 40 | dvdsgcd | |- ( ( ( ( ( K x. M ) gcd ( K x. N ) ) / K ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || M /\ ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || N ) -> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || ( M gcd N ) ) ) |
|
| 41 | 31 4 6 40 | syl3anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || M /\ ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || N ) -> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || ( M gcd N ) ) ) |
| 42 | 34 39 41 | mp2and | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || ( M gcd N ) ) |
| 43 | 11 | nn0zd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) |
| 44 | dvdscmul | |- ( ( ( ( ( K x. M ) gcd ( K x. N ) ) / K ) e. ZZ /\ ( M gcd N ) e. ZZ /\ K e. ZZ ) -> ( ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || ( M gcd N ) -> ( K x. ( ( ( K x. M ) gcd ( K x. N ) ) / K ) ) || ( K x. ( M gcd N ) ) ) ) |
|
| 45 | 31 43 3 44 | syl3anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( K x. M ) gcd ( K x. N ) ) / K ) || ( M gcd N ) -> ( K x. ( ( ( K x. M ) gcd ( K x. N ) ) / K ) ) || ( K x. ( M gcd N ) ) ) ) |
| 46 | 42 45 | mpd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K x. ( ( ( K x. M ) gcd ( K x. N ) ) / K ) ) || ( K x. ( M gcd N ) ) ) |
| 47 | 16 46 | eqbrtrrd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) || ( K x. ( M gcd N ) ) ) |
| 48 | gcddvds | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
|
| 49 | 48 | 3adant1 | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
| 50 | 49 | simpld | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) |
| 51 | dvdscmul | |- ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ K e. ZZ ) -> ( ( M gcd N ) || M -> ( K x. ( M gcd N ) ) || ( K x. M ) ) ) |
|
| 52 | 43 4 3 51 | syl3anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M -> ( K x. ( M gcd N ) ) || ( K x. M ) ) ) |
| 53 | 50 52 | mpd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K x. ( M gcd N ) ) || ( K x. M ) ) |
| 54 | 49 | simprd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || N ) |
| 55 | dvdscmul | |- ( ( ( M gcd N ) e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( M gcd N ) || N -> ( K x. ( M gcd N ) ) || ( K x. N ) ) ) |
|
| 56 | 43 6 3 55 | syl3anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || N -> ( K x. ( M gcd N ) ) || ( K x. N ) ) ) |
| 57 | 54 56 | mpd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K x. ( M gcd N ) ) || ( K x. N ) ) |
| 58 | 12 | nn0zd | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K x. ( M gcd N ) ) e. ZZ ) |
| 59 | dvdsgcd | |- ( ( ( K x. ( M gcd N ) ) e. ZZ /\ ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) -> ( ( ( K x. ( M gcd N ) ) || ( K x. M ) /\ ( K x. ( M gcd N ) ) || ( K x. N ) ) -> ( K x. ( M gcd N ) ) || ( ( K x. M ) gcd ( K x. N ) ) ) ) |
|
| 60 | 58 5 7 59 | syl3anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K x. ( M gcd N ) ) || ( K x. M ) /\ ( K x. ( M gcd N ) ) || ( K x. N ) ) -> ( K x. ( M gcd N ) ) || ( ( K x. M ) gcd ( K x. N ) ) ) ) |
| 61 | 53 57 60 | mp2and | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( K x. ( M gcd N ) ) || ( ( K x. M ) gcd ( K x. N ) ) ) |
| 62 | dvdseq | |- ( ( ( ( ( K x. M ) gcd ( K x. N ) ) e. NN0 /\ ( K x. ( M gcd N ) ) e. NN0 ) /\ ( ( ( K x. M ) gcd ( K x. N ) ) || ( K x. ( M gcd N ) ) /\ ( K x. ( M gcd N ) ) || ( ( K x. M ) gcd ( K x. N ) ) ) ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( K x. ( M gcd N ) ) ) |
|
| 63 | 8 12 47 61 62 | syl22anc | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( K x. ( M gcd N ) ) ) |
| 64 | 63 | 3expib | |- ( K e. NN -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( K x. ( M gcd N ) ) ) ) |
| 65 | gcd0val | |- ( 0 gcd 0 ) = 0 |
|
| 66 | 10 | 3adant1 | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
| 67 | 66 | nn0cnd | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. CC ) |
| 68 | 67 | mul02d | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( 0 x. ( M gcd N ) ) = 0 ) |
| 69 | 65 68 | eqtr4id | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( 0 gcd 0 ) = ( 0 x. ( M gcd N ) ) ) |
| 70 | simp1 | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> K = 0 ) |
|
| 71 | 70 | oveq1d | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( K x. M ) = ( 0 x. M ) ) |
| 72 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 73 | 72 | 3ad2ant2 | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> M e. CC ) |
| 74 | 73 | mul02d | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( 0 x. M ) = 0 ) |
| 75 | 71 74 | eqtrd | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( K x. M ) = 0 ) |
| 76 | 70 | oveq1d | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( K x. N ) = ( 0 x. N ) ) |
| 77 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 78 | 77 | 3ad2ant3 | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> N e. CC ) |
| 79 | 78 | mul02d | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( 0 x. N ) = 0 ) |
| 80 | 76 79 | eqtrd | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( K x. N ) = 0 ) |
| 81 | 75 80 | oveq12d | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( 0 gcd 0 ) ) |
| 82 | 70 | oveq1d | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( K x. ( M gcd N ) ) = ( 0 x. ( M gcd N ) ) ) |
| 83 | 69 81 82 | 3eqtr4d | |- ( ( K = 0 /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( K x. ( M gcd N ) ) ) |
| 84 | 83 | 3expib | |- ( K = 0 -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( K x. ( M gcd N ) ) ) ) |
| 85 | 64 84 | jaoi | |- ( ( K e. NN \/ K = 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( K x. ( M gcd N ) ) ) ) |
| 86 | 1 85 | sylbi | |- ( K e. NN0 -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( K x. ( M gcd N ) ) ) ) |
| 87 | 86 | 3impib | |- ( ( K e. NN0 /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) gcd ( K x. N ) ) = ( K x. ( M gcd N ) ) ) |