This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show that C - B is positive. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem10 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. RR ) |
| 3 | nnne0 | |- ( A e. NN -> A =/= 0 ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A =/= 0 ) |
| 5 | 2 4 | sqgt0d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < ( A ^ 2 ) ) |
| 6 | 2 | resqcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. RR ) |
| 7 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 8 | 7 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. RR ) |
| 9 | 8 | resqcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. RR ) |
| 10 | 6 9 | ltaddpos2d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( 0 < ( A ^ 2 ) <-> ( B ^ 2 ) < ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
| 11 | 5 10 | mpbid | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) < ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 12 | 11 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( B ^ 2 ) < ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 13 | simpr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
|
| 14 | 12 13 | breqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( B ^ 2 ) < ( C ^ 2 ) ) |
| 15 | 8 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> B e. RR ) |
| 16 | nnre | |- ( C e. NN -> C e. RR ) |
|
| 17 | 16 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. RR ) |
| 18 | 17 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> C e. RR ) |
| 19 | nnnn0 | |- ( B e. NN -> B e. NN0 ) |
|
| 20 | 19 | nn0ge0d | |- ( B e. NN -> 0 <_ B ) |
| 21 | 20 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ B ) |
| 22 | 21 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 <_ B ) |
| 23 | nnnn0 | |- ( C e. NN -> C e. NN0 ) |
|
| 24 | 23 | nn0ge0d | |- ( C e. NN -> 0 <_ C ) |
| 25 | 24 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ C ) |
| 26 | 25 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 <_ C ) |
| 27 | 15 18 22 26 | lt2sqd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( B < C <-> ( B ^ 2 ) < ( C ^ 2 ) ) ) |
| 28 | 14 27 | mpbird | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> B < C ) |
| 29 | 15 18 | posdifd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( B < C <-> 0 < ( C - B ) ) ) |
| 30 | 28 29 | mpbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C - B ) ) |