This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdaddm | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd ( N + ( K x. M ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( K = if ( K e. ZZ , K , 0 ) -> ( K x. M ) = ( if ( K e. ZZ , K , 0 ) x. M ) ) |
|
| 2 | 1 | oveq1d | |- ( K = if ( K e. ZZ , K , 0 ) -> ( ( K x. M ) + N ) = ( ( if ( K e. ZZ , K , 0 ) x. M ) + N ) ) |
| 3 | 2 | oveq2d | |- ( K = if ( K e. ZZ , K , 0 ) -> ( M gcd ( ( K x. M ) + N ) ) = ( M gcd ( ( if ( K e. ZZ , K , 0 ) x. M ) + N ) ) ) |
| 4 | 3 | eqeq2d | |- ( K = if ( K e. ZZ , K , 0 ) -> ( ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) <-> ( M gcd N ) = ( M gcd ( ( if ( K e. ZZ , K , 0 ) x. M ) + N ) ) ) ) |
| 5 | oveq1 | |- ( M = if ( M e. ZZ , M , 0 ) -> ( M gcd N ) = ( if ( M e. ZZ , M , 0 ) gcd N ) ) |
|
| 6 | id | |- ( M = if ( M e. ZZ , M , 0 ) -> M = if ( M e. ZZ , M , 0 ) ) |
|
| 7 | oveq2 | |- ( M = if ( M e. ZZ , M , 0 ) -> ( if ( K e. ZZ , K , 0 ) x. M ) = ( if ( K e. ZZ , K , 0 ) x. if ( M e. ZZ , M , 0 ) ) ) |
|
| 8 | 7 | oveq1d | |- ( M = if ( M e. ZZ , M , 0 ) -> ( ( if ( K e. ZZ , K , 0 ) x. M ) + N ) = ( ( if ( K e. ZZ , K , 0 ) x. if ( M e. ZZ , M , 0 ) ) + N ) ) |
| 9 | 6 8 | oveq12d | |- ( M = if ( M e. ZZ , M , 0 ) -> ( M gcd ( ( if ( K e. ZZ , K , 0 ) x. M ) + N ) ) = ( if ( M e. ZZ , M , 0 ) gcd ( ( if ( K e. ZZ , K , 0 ) x. if ( M e. ZZ , M , 0 ) ) + N ) ) ) |
| 10 | 5 9 | eqeq12d | |- ( M = if ( M e. ZZ , M , 0 ) -> ( ( M gcd N ) = ( M gcd ( ( if ( K e. ZZ , K , 0 ) x. M ) + N ) ) <-> ( if ( M e. ZZ , M , 0 ) gcd N ) = ( if ( M e. ZZ , M , 0 ) gcd ( ( if ( K e. ZZ , K , 0 ) x. if ( M e. ZZ , M , 0 ) ) + N ) ) ) ) |
| 11 | oveq2 | |- ( N = if ( N e. ZZ , N , 0 ) -> ( if ( M e. ZZ , M , 0 ) gcd N ) = ( if ( M e. ZZ , M , 0 ) gcd if ( N e. ZZ , N , 0 ) ) ) |
|
| 12 | oveq2 | |- ( N = if ( N e. ZZ , N , 0 ) -> ( ( if ( K e. ZZ , K , 0 ) x. if ( M e. ZZ , M , 0 ) ) + N ) = ( ( if ( K e. ZZ , K , 0 ) x. if ( M e. ZZ , M , 0 ) ) + if ( N e. ZZ , N , 0 ) ) ) |
|
| 13 | 12 | oveq2d | |- ( N = if ( N e. ZZ , N , 0 ) -> ( if ( M e. ZZ , M , 0 ) gcd ( ( if ( K e. ZZ , K , 0 ) x. if ( M e. ZZ , M , 0 ) ) + N ) ) = ( if ( M e. ZZ , M , 0 ) gcd ( ( if ( K e. ZZ , K , 0 ) x. if ( M e. ZZ , M , 0 ) ) + if ( N e. ZZ , N , 0 ) ) ) ) |
| 14 | 11 13 | eqeq12d | |- ( N = if ( N e. ZZ , N , 0 ) -> ( ( if ( M e. ZZ , M , 0 ) gcd N ) = ( if ( M e. ZZ , M , 0 ) gcd ( ( if ( K e. ZZ , K , 0 ) x. if ( M e. ZZ , M , 0 ) ) + N ) ) <-> ( if ( M e. ZZ , M , 0 ) gcd if ( N e. ZZ , N , 0 ) ) = ( if ( M e. ZZ , M , 0 ) gcd ( ( if ( K e. ZZ , K , 0 ) x. if ( M e. ZZ , M , 0 ) ) + if ( N e. ZZ , N , 0 ) ) ) ) ) |
| 15 | 0z | |- 0 e. ZZ |
|
| 16 | 15 | elimel | |- if ( K e. ZZ , K , 0 ) e. ZZ |
| 17 | 15 | elimel | |- if ( M e. ZZ , M , 0 ) e. ZZ |
| 18 | 15 | elimel | |- if ( N e. ZZ , N , 0 ) e. ZZ |
| 19 | 16 17 18 | gcdaddmlem | |- ( if ( M e. ZZ , M , 0 ) gcd if ( N e. ZZ , N , 0 ) ) = ( if ( M e. ZZ , M , 0 ) gcd ( ( if ( K e. ZZ , K , 0 ) x. if ( M e. ZZ , M , 0 ) ) + if ( N e. ZZ , N , 0 ) ) ) |
| 20 | 4 10 14 19 | dedth3h | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) ) |
| 21 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 22 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 23 | mulcl | |- ( ( K e. CC /\ M e. CC ) -> ( K x. M ) e. CC ) |
|
| 24 | 21 22 23 | syl2an | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. CC ) |
| 25 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 26 | addcom | |- ( ( ( K x. M ) e. CC /\ N e. CC ) -> ( ( K x. M ) + N ) = ( N + ( K x. M ) ) ) |
|
| 27 | 24 25 26 | syl2an | |- ( ( ( K e. ZZ /\ M e. ZZ ) /\ N e. ZZ ) -> ( ( K x. M ) + N ) = ( N + ( K x. M ) ) ) |
| 28 | 27 | 3impa | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) + N ) = ( N + ( K x. M ) ) ) |
| 29 | 28 | oveq2d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd ( ( K x. M ) + N ) ) = ( M gcd ( N + ( K x. M ) ) ) ) |
| 30 | 20 29 | eqtrd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd ( N + ( K x. M ) ) ) ) |