This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolsca . (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolsca.1 | |- ( ph -> A C_ RR ) |
|
| ovolsca.2 | |- ( ph -> C e. RR+ ) |
||
| ovolsca.3 | |- ( ph -> B = { x e. RR | ( C x. x ) e. A } ) |
||
| ovolsca.4 | |- ( ph -> ( vol* ` A ) e. RR ) |
||
| ovolsca.5 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| ovolsca.6 | |- G = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) |
||
| ovolsca.7 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| ovolsca.8 | |- ( ph -> A C_ U. ran ( (,) o. F ) ) |
||
| ovolsca.9 | |- ( ph -> R e. RR+ ) |
||
| ovolsca.10 | |- ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) |
||
| Assertion | ovolscalem1 | |- ( ph -> ( vol* ` B ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolsca.1 | |- ( ph -> A C_ RR ) |
|
| 2 | ovolsca.2 | |- ( ph -> C e. RR+ ) |
|
| 3 | ovolsca.3 | |- ( ph -> B = { x e. RR | ( C x. x ) e. A } ) |
|
| 4 | ovolsca.4 | |- ( ph -> ( vol* ` A ) e. RR ) |
|
| 5 | ovolsca.5 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 6 | ovolsca.6 | |- G = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) |
|
| 7 | ovolsca.7 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 8 | ovolsca.8 | |- ( ph -> A C_ U. ran ( (,) o. F ) ) |
|
| 9 | ovolsca.9 | |- ( ph -> R e. RR+ ) |
|
| 10 | ovolsca.10 | |- ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) |
|
| 11 | ssrab2 | |- { x e. RR | ( C x. x ) e. A } C_ RR |
|
| 12 | 3 11 | eqsstrdi | |- ( ph -> B C_ RR ) |
| 13 | ovolcl | |- ( B C_ RR -> ( vol* ` B ) e. RR* ) |
|
| 14 | 12 13 | syl | |- ( ph -> ( vol* ` B ) e. RR* ) |
| 15 | ovolfcl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
|
| 16 | 7 15 | sylan | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
| 17 | 16 | simp3d | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) |
| 18 | 16 | simp1d | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) |
| 19 | 16 | simp2d | |- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) |
| 20 | 2 | rpregt0d | |- ( ph -> ( C e. RR /\ 0 < C ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ n e. NN ) -> ( C e. RR /\ 0 < C ) ) |
| 22 | lediv1 | |- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) <-> ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) ) ) |
|
| 23 | 18 19 21 22 | syl3anc | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) <-> ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) ) ) |
| 24 | 17 23 | mpbid | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) ) |
| 25 | df-br | |- ( ( ( 1st ` ( F ` n ) ) / C ) <_ ( ( 2nd ` ( F ` n ) ) / C ) <-> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. <_ ) |
|
| 26 | 24 25 | sylib | |- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. <_ ) |
| 27 | 2 | adantr | |- ( ( ph /\ n e. NN ) -> C e. RR+ ) |
| 28 | 18 27 | rerpdivcld | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) / C ) e. RR ) |
| 29 | 19 27 | rerpdivcld | |- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( F ` n ) ) / C ) e. RR ) |
| 30 | 28 29 | opelxpd | |- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. ( RR X. RR ) ) |
| 31 | 26 30 | elind | |- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. ( <_ i^i ( RR X. RR ) ) ) |
| 32 | 31 6 | fmptd | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 33 | eqid | |- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
|
| 34 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. G ) ) = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 35 | 33 34 | ovolsf | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) |
| 36 | 32 35 | syl | |- ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) |
| 37 | 36 | frnd | |- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ ( 0 [,) +oo ) ) |
| 38 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 39 | 37 38 | sstrdi | |- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* ) |
| 40 | supxrcl | |- ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) |
|
| 41 | 39 40 | syl | |- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) |
| 42 | 4 2 | rerpdivcld | |- ( ph -> ( ( vol* ` A ) / C ) e. RR ) |
| 43 | 9 | rpred | |- ( ph -> R e. RR ) |
| 44 | 42 43 | readdcld | |- ( ph -> ( ( ( vol* ` A ) / C ) + R ) e. RR ) |
| 45 | 44 | rexrd | |- ( ph -> ( ( ( vol* ` A ) / C ) + R ) e. RR* ) |
| 46 | 3 | eleq2d | |- ( ph -> ( y e. B <-> y e. { x e. RR | ( C x. x ) e. A } ) ) |
| 47 | oveq2 | |- ( x = y -> ( C x. x ) = ( C x. y ) ) |
|
| 48 | 47 | eleq1d | |- ( x = y -> ( ( C x. x ) e. A <-> ( C x. y ) e. A ) ) |
| 49 | 48 | elrab | |- ( y e. { x e. RR | ( C x. x ) e. A } <-> ( y e. RR /\ ( C x. y ) e. A ) ) |
| 50 | 46 49 | bitrdi | |- ( ph -> ( y e. B <-> ( y e. RR /\ ( C x. y ) e. A ) ) ) |
| 51 | breq2 | |- ( x = ( C x. y ) -> ( ( 1st ` ( F ` n ) ) < x <-> ( 1st ` ( F ` n ) ) < ( C x. y ) ) ) |
|
| 52 | breq1 | |- ( x = ( C x. y ) -> ( x < ( 2nd ` ( F ` n ) ) <-> ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) |
|
| 53 | 51 52 | anbi12d | |- ( x = ( C x. y ) -> ( ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) <-> ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) ) |
| 54 | 53 | rexbidv | |- ( x = ( C x. y ) -> ( E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) ) |
| 55 | ovolfioo | |- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. F ) <-> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) ) |
|
| 56 | 1 7 55 | syl2anc | |- ( ph -> ( A C_ U. ran ( (,) o. F ) <-> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) ) |
| 57 | 8 56 | mpbid | |- ( ph -> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) |
| 58 | 57 | adantr | |- ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> A. x e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < x /\ x < ( 2nd ` ( F ` n ) ) ) ) |
| 59 | simprr | |- ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> ( C x. y ) e. A ) |
|
| 60 | 54 58 59 | rspcdva | |- ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> E. n e. NN ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) ) |
| 61 | opex | |- <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. _V |
|
| 62 | 6 | fvmpt2 | |- ( ( n e. NN /\ <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. e. _V ) -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) |
| 63 | 61 62 | mpan2 | |- ( n e. NN -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) |
| 64 | 63 | fveq2d | |- ( n e. NN -> ( 1st ` ( G ` n ) ) = ( 1st ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) ) |
| 65 | ovex | |- ( ( 1st ` ( F ` n ) ) / C ) e. _V |
|
| 66 | ovex | |- ( ( 2nd ` ( F ` n ) ) / C ) e. _V |
|
| 67 | 65 66 | op1st | |- ( 1st ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) = ( ( 1st ` ( F ` n ) ) / C ) |
| 68 | 64 67 | eqtrdi | |- ( n e. NN -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) / C ) ) |
| 69 | 68 | adantl | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) / C ) ) |
| 70 | 69 | breq1d | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) < y <-> ( ( 1st ` ( F ` n ) ) / C ) < y ) ) |
| 71 | 18 | adantlr | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) |
| 72 | simplrl | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> y e. RR ) |
|
| 73 | 21 | adantlr | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( C e. RR /\ 0 < C ) ) |
| 74 | ltdivmul | |- ( ( ( 1st ` ( F ` n ) ) e. RR /\ y e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( ( 1st ` ( F ` n ) ) / C ) < y <-> ( 1st ` ( F ` n ) ) < ( C x. y ) ) ) |
|
| 75 | 71 72 73 74 | syl3anc | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( ( 1st ` ( F ` n ) ) / C ) < y <-> ( 1st ` ( F ` n ) ) < ( C x. y ) ) ) |
| 76 | 70 75 | bitr2d | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) < ( C x. y ) <-> ( 1st ` ( G ` n ) ) < y ) ) |
| 77 | 19 | adantlr | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) |
| 78 | ltmuldiv2 | |- ( ( y e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. y ) < ( 2nd ` ( F ` n ) ) <-> y < ( ( 2nd ` ( F ` n ) ) / C ) ) ) |
|
| 79 | 72 77 73 78 | syl3anc | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( C x. y ) < ( 2nd ` ( F ` n ) ) <-> y < ( ( 2nd ` ( F ` n ) ) / C ) ) ) |
| 80 | 63 | fveq2d | |- ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( 2nd ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) ) |
| 81 | 65 66 | op2nd | |- ( 2nd ` <. ( ( 1st ` ( F ` n ) ) / C ) , ( ( 2nd ` ( F ` n ) ) / C ) >. ) = ( ( 2nd ` ( F ` n ) ) / C ) |
| 82 | 80 81 | eqtrdi | |- ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( ( 2nd ` ( F ` n ) ) / C ) ) |
| 83 | 82 | adantl | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) = ( ( 2nd ` ( F ` n ) ) / C ) ) |
| 84 | 83 | breq2d | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( y < ( 2nd ` ( G ` n ) ) <-> y < ( ( 2nd ` ( F ` n ) ) / C ) ) ) |
| 85 | 79 84 | bitr4d | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( C x. y ) < ( 2nd ` ( F ` n ) ) <-> y < ( 2nd ` ( G ` n ) ) ) ) |
| 86 | 76 85 | anbi12d | |- ( ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) /\ n e. NN ) -> ( ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) <-> ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 87 | 86 | rexbidva | |- ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> ( E. n e. NN ( ( 1st ` ( F ` n ) ) < ( C x. y ) /\ ( C x. y ) < ( 2nd ` ( F ` n ) ) ) <-> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 88 | 60 87 | mpbid | |- ( ( ph /\ ( y e. RR /\ ( C x. y ) e. A ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) |
| 89 | 88 | ex | |- ( ph -> ( ( y e. RR /\ ( C x. y ) e. A ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 90 | 50 89 | sylbid | |- ( ph -> ( y e. B -> E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 91 | 90 | ralrimiv | |- ( ph -> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) |
| 92 | ovolfioo | |- ( ( B C_ RR /\ G : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( B C_ U. ran ( (,) o. G ) <-> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
|
| 93 | 12 32 92 | syl2anc | |- ( ph -> ( B C_ U. ran ( (,) o. G ) <-> A. y e. B E. n e. NN ( ( 1st ` ( G ` n ) ) < y /\ y < ( 2nd ` ( G ` n ) ) ) ) ) |
| 94 | 91 93 | mpbird | |- ( ph -> B C_ U. ran ( (,) o. G ) ) |
| 95 | 34 | ovollb | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ B C_ U. ran ( (,) o. G ) ) -> ( vol* ` B ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) |
| 96 | 32 94 95 | syl2anc | |- ( ph -> ( vol* ` B ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) |
| 97 | fzfid | |- ( ( ph /\ k e. NN ) -> ( 1 ... k ) e. Fin ) |
|
| 98 | 2 | rpcnd | |- ( ph -> C e. CC ) |
| 99 | 98 | adantr | |- ( ( ph /\ k e. NN ) -> C e. CC ) |
| 100 | simpl | |- ( ( ph /\ k e. NN ) -> ph ) |
|
| 101 | elfznn | |- ( n e. ( 1 ... k ) -> n e. NN ) |
|
| 102 | 19 18 | resubcld | |- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR ) |
| 103 | 100 101 102 | syl2an | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR ) |
| 104 | 103 | recnd | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. CC ) |
| 105 | 2 | rpne0d | |- ( ph -> C =/= 0 ) |
| 106 | 105 | adantr | |- ( ( ph /\ k e. NN ) -> C =/= 0 ) |
| 107 | 97 99 104 106 | fsumdivc | |- ( ( ph /\ k e. NN ) -> ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = sum_ n e. ( 1 ... k ) ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) ) |
| 108 | 82 68 | oveq12d | |- ( n e. NN -> ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) |
| 109 | 108 | adantl | |- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) |
| 110 | 33 | ovolfsval | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) ) |
| 111 | 32 110 | sylan | |- ( ( ph /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( 2nd ` ( G ` n ) ) - ( 1st ` ( G ` n ) ) ) ) |
| 112 | 19 | recnd | |- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. CC ) |
| 113 | 18 | recnd | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. CC ) |
| 114 | 2 | rpcnne0d | |- ( ph -> ( C e. CC /\ C =/= 0 ) ) |
| 115 | 114 | adantr | |- ( ( ph /\ n e. NN ) -> ( C e. CC /\ C =/= 0 ) ) |
| 116 | divsubdir | |- ( ( ( 2nd ` ( F ` n ) ) e. CC /\ ( 1st ` ( F ` n ) ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) |
|
| 117 | 112 113 115 116 | syl3anc | |- ( ( ph /\ n e. NN ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( ( ( 2nd ` ( F ` n ) ) / C ) - ( ( 1st ` ( F ` n ) ) / C ) ) ) |
| 118 | 109 111 117 | 3eqtr4d | |- ( ( ph /\ n e. NN ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) ) |
| 119 | 100 101 118 | syl2an | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. G ) ` n ) = ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) ) |
| 120 | simpr | |- ( ( ph /\ k e. NN ) -> k e. NN ) |
|
| 121 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 122 | 120 121 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 123 | 102 27 | rerpdivcld | |- ( ( ph /\ n e. NN ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) e. RR ) |
| 124 | 123 | recnd | |- ( ( ph /\ n e. NN ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) e. CC ) |
| 125 | 100 101 124 | syl2an | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) e. CC ) |
| 126 | 119 122 125 | fsumser | |- ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) ) |
| 127 | 107 126 | eqtrd | |- ( ( ph /\ k e. NN ) -> ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) ) |
| 128 | eqid | |- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
|
| 129 | 128 5 | ovolsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 130 | 7 129 | syl | |- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
| 131 | 130 | frnd | |- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
| 132 | 131 38 | sstrdi | |- ( ph -> ran S C_ RR* ) |
| 133 | 2 9 | rpmulcld | |- ( ph -> ( C x. R ) e. RR+ ) |
| 134 | 133 | rpred | |- ( ph -> ( C x. R ) e. RR ) |
| 135 | 4 134 | readdcld | |- ( ph -> ( ( vol* ` A ) + ( C x. R ) ) e. RR ) |
| 136 | 135 | rexrd | |- ( ph -> ( ( vol* ` A ) + ( C x. R ) ) e. RR* ) |
| 137 | supxrleub | |- ( ( ran S C_ RR* /\ ( ( vol* ` A ) + ( C x. R ) ) e. RR* ) -> ( sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) |
|
| 138 | 132 136 137 | syl2anc | |- ( ph -> ( sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) |
| 139 | 10 138 | mpbid | |- ( ph -> A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) ) |
| 140 | 130 | ffnd | |- ( ph -> S Fn NN ) |
| 141 | breq1 | |- ( x = ( S ` k ) -> ( x <_ ( ( vol* ` A ) + ( C x. R ) ) <-> ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) |
|
| 142 | 141 | ralrn | |- ( S Fn NN -> ( A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. k e. NN ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) |
| 143 | 140 142 | syl | |- ( ph -> ( A. x e. ran S x <_ ( ( vol* ` A ) + ( C x. R ) ) <-> A. k e. NN ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) ) |
| 144 | 139 143 | mpbid | |- ( ph -> A. k e. NN ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) |
| 145 | 144 | r19.21bi | |- ( ( ph /\ k e. NN ) -> ( S ` k ) <_ ( ( vol* ` A ) + ( C x. R ) ) ) |
| 146 | 7 | adantr | |- ( ( ph /\ k e. NN ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 147 | 128 | ovolfsval | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( ( abs o. - ) o. F ) ` n ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 148 | 146 101 147 | syl2an | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. F ) ` n ) = ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) ) |
| 149 | 148 122 104 | fsumser | |- ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) ) |
| 150 | 5 | fveq1i | |- ( S ` k ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) |
| 151 | 149 150 | eqtr4di | |- ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) = ( S ` k ) ) |
| 152 | 42 | recnd | |- ( ph -> ( ( vol* ` A ) / C ) e. CC ) |
| 153 | 9 | rpcnd | |- ( ph -> R e. CC ) |
| 154 | 98 152 153 | adddid | |- ( ph -> ( C x. ( ( ( vol* ` A ) / C ) + R ) ) = ( ( C x. ( ( vol* ` A ) / C ) ) + ( C x. R ) ) ) |
| 155 | 4 | recnd | |- ( ph -> ( vol* ` A ) e. CC ) |
| 156 | 155 98 105 | divcan2d | |- ( ph -> ( C x. ( ( vol* ` A ) / C ) ) = ( vol* ` A ) ) |
| 157 | 156 | oveq1d | |- ( ph -> ( ( C x. ( ( vol* ` A ) / C ) ) + ( C x. R ) ) = ( ( vol* ` A ) + ( C x. R ) ) ) |
| 158 | 154 157 | eqtrd | |- ( ph -> ( C x. ( ( ( vol* ` A ) / C ) + R ) ) = ( ( vol* ` A ) + ( C x. R ) ) ) |
| 159 | 158 | adantr | |- ( ( ph /\ k e. NN ) -> ( C x. ( ( ( vol* ` A ) / C ) + R ) ) = ( ( vol* ` A ) + ( C x. R ) ) ) |
| 160 | 145 151 159 | 3brtr4d | |- ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) <_ ( C x. ( ( ( vol* ` A ) / C ) + R ) ) ) |
| 161 | 97 103 | fsumrecl | |- ( ( ph /\ k e. NN ) -> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR ) |
| 162 | 44 | adantr | |- ( ( ph /\ k e. NN ) -> ( ( ( vol* ` A ) / C ) + R ) e. RR ) |
| 163 | 20 | adantr | |- ( ( ph /\ k e. NN ) -> ( C e. RR /\ 0 < C ) ) |
| 164 | ledivmul | |- ( ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) e. RR /\ ( ( ( vol* ` A ) / C ) + R ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) <_ ( C x. ( ( ( vol* ` A ) / C ) + R ) ) ) ) |
|
| 165 | 161 162 163 164 | syl3anc | |- ( ( ph /\ k e. NN ) -> ( ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) <_ ( C x. ( ( ( vol* ` A ) / C ) + R ) ) ) ) |
| 166 | 160 165 | mpbird | |- ( ( ph /\ k e. NN ) -> ( sum_ n e. ( 1 ... k ) ( ( 2nd ` ( F ` n ) ) - ( 1st ` ( F ` n ) ) ) / C ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |
| 167 | 127 166 | eqbrtrrd | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |
| 168 | 167 | ralrimiva | |- ( ph -> A. k e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |
| 169 | 36 | ffnd | |- ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN ) |
| 170 | breq1 | |- ( y = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) -> ( y <_ ( ( ( vol* ` A ) / C ) + R ) <-> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) ) |
|
| 171 | 170 | ralrn | |- ( seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN -> ( A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. k e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) ) |
| 172 | 169 171 | syl | |- ( ph -> ( A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. k e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) <_ ( ( ( vol* ` A ) / C ) + R ) ) ) |
| 173 | 168 172 | mpbird | |- ( ph -> A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) ) |
| 174 | supxrleub | |- ( ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* /\ ( ( ( vol* ` A ) / C ) + R ) e. RR* ) -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) ) ) |
|
| 175 | 39 45 174 | syl2anc | |- ( ph -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( ( ( vol* ` A ) / C ) + R ) <-> A. y e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) y <_ ( ( ( vol* ` A ) / C ) + R ) ) ) |
| 176 | 173 175 | mpbird | |- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |
| 177 | 14 41 45 96 176 | xrletrd | |- ( ph -> ( vol* ` B ) <_ ( ( ( vol* ` A ) / C ) + R ) ) |