This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lediv1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A / C ) <_ ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltdiv1 | |- ( ( B e. RR /\ A e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B < A <-> ( B / C ) < ( A / C ) ) ) |
|
| 2 | 1 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B < A <-> ( B / C ) < ( A / C ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( -. B < A <-> -. ( B / C ) < ( A / C ) ) ) |
| 4 | lenlt | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
|
| 5 | 4 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> -. B < A ) ) |
| 6 | gt0ne0 | |- ( ( C e. RR /\ 0 < C ) -> C =/= 0 ) |
|
| 7 | 6 | 3adant1 | |- ( ( A e. RR /\ C e. RR /\ 0 < C ) -> C =/= 0 ) |
| 8 | redivcl | |- ( ( A e. RR /\ C e. RR /\ C =/= 0 ) -> ( A / C ) e. RR ) |
|
| 9 | 7 8 | syld3an3 | |- ( ( A e. RR /\ C e. RR /\ 0 < C ) -> ( A / C ) e. RR ) |
| 10 | 9 | 3expb | |- ( ( A e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A / C ) e. RR ) |
| 11 | 10 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A / C ) e. RR ) |
| 12 | 6 | 3adant1 | |- ( ( B e. RR /\ C e. RR /\ 0 < C ) -> C =/= 0 ) |
| 13 | redivcl | |- ( ( B e. RR /\ C e. RR /\ C =/= 0 ) -> ( B / C ) e. RR ) |
|
| 14 | 12 13 | syld3an3 | |- ( ( B e. RR /\ C e. RR /\ 0 < C ) -> ( B / C ) e. RR ) |
| 15 | 14 | 3expb | |- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B / C ) e. RR ) |
| 16 | 15 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B / C ) e. RR ) |
| 17 | 11 16 | lenltd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ ( B / C ) <-> -. ( B / C ) < ( A / C ) ) ) |
| 18 | 3 5 17 | 3bitr4d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A / C ) <_ ( B / C ) ) ) |