This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolshft . (Contributed by Mario Carneiro, 22-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolsca.1 | |- ( ph -> A C_ RR ) |
|
| ovolsca.2 | |- ( ph -> C e. RR+ ) |
||
| ovolsca.3 | |- ( ph -> B = { x e. RR | ( C x. x ) e. A } ) |
||
| ovolsca.4 | |- ( ph -> ( vol* ` A ) e. RR ) |
||
| Assertion | ovolscalem2 | |- ( ph -> ( vol* ` B ) <_ ( ( vol* ` A ) / C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolsca.1 | |- ( ph -> A C_ RR ) |
|
| 2 | ovolsca.2 | |- ( ph -> C e. RR+ ) |
|
| 3 | ovolsca.3 | |- ( ph -> B = { x e. RR | ( C x. x ) e. A } ) |
|
| 4 | ovolsca.4 | |- ( ph -> ( vol* ` A ) e. RR ) |
|
| 5 | 1 | adantr | |- ( ( ph /\ y e. RR+ ) -> A C_ RR ) |
| 6 | 4 | adantr | |- ( ( ph /\ y e. RR+ ) -> ( vol* ` A ) e. RR ) |
| 7 | rpmulcl | |- ( ( C e. RR+ /\ y e. RR+ ) -> ( C x. y ) e. RR+ ) |
|
| 8 | 2 7 | sylan | |- ( ( ph /\ y e. RR+ ) -> ( C x. y ) e. RR+ ) |
| 9 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. f ) ) = seq 1 ( + , ( ( abs o. - ) o. f ) ) |
|
| 10 | 9 | ovolgelb | |- ( ( A C_ RR /\ ( vol* ` A ) e. RR /\ ( C x. y ) e. RR+ ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) ) |
| 11 | 5 6 8 10 | syl3anc | |- ( ( ph /\ y e. RR+ ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) ) |
| 12 | 1 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) ) ) -> A C_ RR ) |
| 13 | 2 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) ) ) -> C e. RR+ ) |
| 14 | 3 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) ) ) -> B = { x e. RR | ( C x. x ) e. A } ) |
| 15 | 4 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) ) ) -> ( vol* ` A ) e. RR ) |
| 16 | 2fveq3 | |- ( m = n -> ( 1st ` ( f ` m ) ) = ( 1st ` ( f ` n ) ) ) |
|
| 17 | 16 | oveq1d | |- ( m = n -> ( ( 1st ` ( f ` m ) ) / C ) = ( ( 1st ` ( f ` n ) ) / C ) ) |
| 18 | 2fveq3 | |- ( m = n -> ( 2nd ` ( f ` m ) ) = ( 2nd ` ( f ` n ) ) ) |
|
| 19 | 18 | oveq1d | |- ( m = n -> ( ( 2nd ` ( f ` m ) ) / C ) = ( ( 2nd ` ( f ` n ) ) / C ) ) |
| 20 | 17 19 | opeq12d | |- ( m = n -> <. ( ( 1st ` ( f ` m ) ) / C ) , ( ( 2nd ` ( f ` m ) ) / C ) >. = <. ( ( 1st ` ( f ` n ) ) / C ) , ( ( 2nd ` ( f ` n ) ) / C ) >. ) |
| 21 | 20 | cbvmptv | |- ( m e. NN |-> <. ( ( 1st ` ( f ` m ) ) / C ) , ( ( 2nd ` ( f ` m ) ) / C ) >. ) = ( n e. NN |-> <. ( ( 1st ` ( f ` n ) ) / C ) , ( ( 2nd ` ( f ` n ) ) / C ) >. ) |
| 22 | elmapi | |- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 23 | 22 | ad2antrl | |- ( ( ( ph /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) ) ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 24 | simprrl | |- ( ( ( ph /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) ) ) -> A C_ U. ran ( (,) o. f ) ) |
|
| 25 | simplr | |- ( ( ( ph /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) ) ) -> y e. RR+ ) |
|
| 26 | simprrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) ) ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) |
|
| 27 | 12 13 14 15 9 21 23 24 25 26 | ovolscalem1 | |- ( ( ( ph /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` A ) + ( C x. y ) ) ) ) ) -> ( vol* ` B ) <_ ( ( ( vol* ` A ) / C ) + y ) ) |
| 28 | 11 27 | rexlimddv | |- ( ( ph /\ y e. RR+ ) -> ( vol* ` B ) <_ ( ( ( vol* ` A ) / C ) + y ) ) |
| 29 | 28 | ralrimiva | |- ( ph -> A. y e. RR+ ( vol* ` B ) <_ ( ( ( vol* ` A ) / C ) + y ) ) |
| 30 | ssrab2 | |- { x e. RR | ( C x. x ) e. A } C_ RR |
|
| 31 | 3 30 | eqsstrdi | |- ( ph -> B C_ RR ) |
| 32 | ovolcl | |- ( B C_ RR -> ( vol* ` B ) e. RR* ) |
|
| 33 | 31 32 | syl | |- ( ph -> ( vol* ` B ) e. RR* ) |
| 34 | 4 2 | rerpdivcld | |- ( ph -> ( ( vol* ` A ) / C ) e. RR ) |
| 35 | xralrple | |- ( ( ( vol* ` B ) e. RR* /\ ( ( vol* ` A ) / C ) e. RR ) -> ( ( vol* ` B ) <_ ( ( vol* ` A ) / C ) <-> A. y e. RR+ ( vol* ` B ) <_ ( ( ( vol* ` A ) / C ) + y ) ) ) |
|
| 36 | 33 34 35 | syl2anc | |- ( ph -> ( ( vol* ` B ) <_ ( ( vol* ` A ) / C ) <-> A. y e. RR+ ( vol* ` B ) <_ ( ( ( vol* ` A ) / C ) + y ) ) ) |
| 37 | 29 36 | mpbird | |- ( ph -> ( vol* ` B ) <_ ( ( vol* ` A ) / C ) ) |