This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsummulc2.1 | |- ( ph -> A e. Fin ) |
|
| fsummulc2.2 | |- ( ph -> C e. CC ) |
||
| fsummulc2.3 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fsumdivc.4 | |- ( ph -> C =/= 0 ) |
||
| Assertion | fsumdivc | |- ( ph -> ( sum_ k e. A B / C ) = sum_ k e. A ( B / C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsummulc2.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsummulc2.2 | |- ( ph -> C e. CC ) |
|
| 3 | fsummulc2.3 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 4 | fsumdivc.4 | |- ( ph -> C =/= 0 ) |
|
| 5 | 2 4 | reccld | |- ( ph -> ( 1 / C ) e. CC ) |
| 6 | 1 5 3 | fsummulc1 | |- ( ph -> ( sum_ k e. A B x. ( 1 / C ) ) = sum_ k e. A ( B x. ( 1 / C ) ) ) |
| 7 | 1 3 | fsumcl | |- ( ph -> sum_ k e. A B e. CC ) |
| 8 | 7 2 4 | divrecd | |- ( ph -> ( sum_ k e. A B / C ) = ( sum_ k e. A B x. ( 1 / C ) ) ) |
| 9 | 2 | adantr | |- ( ( ph /\ k e. A ) -> C e. CC ) |
| 10 | 4 | adantr | |- ( ( ph /\ k e. A ) -> C =/= 0 ) |
| 11 | 3 9 10 | divrecd | |- ( ( ph /\ k e. A ) -> ( B / C ) = ( B x. ( 1 / C ) ) ) |
| 12 | 11 | sumeq2dv | |- ( ph -> sum_ k e. A ( B / C ) = sum_ k e. A ( B x. ( 1 / C ) ) ) |
| 13 | 6 8 12 | 3eqtr4d | |- ( ph -> ( sum_ k e. A B / C ) = sum_ k e. A ( B / C ) ) |