This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divsubdir | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A - B ) / C ) = ( ( A / C ) - ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 2 | divdir | |- ( ( A e. CC /\ -u B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A + -u B ) / C ) = ( ( A / C ) + ( -u B / C ) ) ) |
|
| 3 | 1 2 | syl3an2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A + -u B ) / C ) = ( ( A / C ) + ( -u B / C ) ) ) |
| 4 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 5 | 4 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + -u B ) / C ) = ( ( A - B ) / C ) ) |
| 6 | 5 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A + -u B ) / C ) = ( ( A - B ) / C ) ) |
| 7 | 3 6 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) + ( -u B / C ) ) = ( ( A - B ) / C ) ) |
| 8 | divneg | |- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> -u ( B / C ) = ( -u B / C ) ) |
|
| 9 | 8 | 3expb | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> -u ( B / C ) = ( -u B / C ) ) |
| 10 | 9 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> -u ( B / C ) = ( -u B / C ) ) |
| 11 | 10 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) + -u ( B / C ) ) = ( ( A / C ) + ( -u B / C ) ) ) |
| 12 | divcl | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
|
| 13 | 12 | 3expb | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
| 14 | 13 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
| 15 | divcl | |- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( B / C ) e. CC ) |
|
| 16 | 15 | 3expb | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) e. CC ) |
| 17 | 16 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) e. CC ) |
| 18 | 14 17 | negsubd | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) + -u ( B / C ) ) = ( ( A / C ) - ( B / C ) ) ) |
| 19 | 11 18 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) + ( -u B / C ) ) = ( ( A / C ) - ( B / C ) ) ) |
| 20 | 7 19 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A - B ) / C ) = ( ( A / C ) - ( B / C ) ) ) |