This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue outer measure function respects scaling of sets by positive reals. (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolsca.1 | |- ( ph -> A C_ RR ) |
|
| ovolsca.2 | |- ( ph -> C e. RR+ ) |
||
| ovolsca.3 | |- ( ph -> B = { x e. RR | ( C x. x ) e. A } ) |
||
| ovolsca.4 | |- ( ph -> ( vol* ` A ) e. RR ) |
||
| Assertion | ovolsca | |- ( ph -> ( vol* ` B ) = ( ( vol* ` A ) / C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolsca.1 | |- ( ph -> A C_ RR ) |
|
| 2 | ovolsca.2 | |- ( ph -> C e. RR+ ) |
|
| 3 | ovolsca.3 | |- ( ph -> B = { x e. RR | ( C x. x ) e. A } ) |
|
| 4 | ovolsca.4 | |- ( ph -> ( vol* ` A ) e. RR ) |
|
| 5 | 1 2 3 4 | ovolscalem2 | |- ( ph -> ( vol* ` B ) <_ ( ( vol* ` A ) / C ) ) |
| 6 | 4 | recnd | |- ( ph -> ( vol* ` A ) e. CC ) |
| 7 | 2 | rpcnd | |- ( ph -> C e. CC ) |
| 8 | 2 | rpne0d | |- ( ph -> C =/= 0 ) |
| 9 | 6 7 8 | divrecd | |- ( ph -> ( ( vol* ` A ) / C ) = ( ( vol* ` A ) x. ( 1 / C ) ) ) |
| 10 | ssrab2 | |- { x e. RR | ( C x. x ) e. A } C_ RR |
|
| 11 | 3 10 | eqsstrdi | |- ( ph -> B C_ RR ) |
| 12 | 2 | rpreccld | |- ( ph -> ( 1 / C ) e. RR+ ) |
| 13 | 1 2 3 | sca2rab | |- ( ph -> A = { y e. RR | ( ( 1 / C ) x. y ) e. B } ) |
| 14 | 4 2 | rerpdivcld | |- ( ph -> ( ( vol* ` A ) / C ) e. RR ) |
| 15 | ovollecl | |- ( ( B C_ RR /\ ( ( vol* ` A ) / C ) e. RR /\ ( vol* ` B ) <_ ( ( vol* ` A ) / C ) ) -> ( vol* ` B ) e. RR ) |
|
| 16 | 11 14 5 15 | syl3anc | |- ( ph -> ( vol* ` B ) e. RR ) |
| 17 | 11 12 13 16 | ovolscalem2 | |- ( ph -> ( vol* ` A ) <_ ( ( vol* ` B ) / ( 1 / C ) ) ) |
| 18 | 4 16 12 | lemuldivd | |- ( ph -> ( ( ( vol* ` A ) x. ( 1 / C ) ) <_ ( vol* ` B ) <-> ( vol* ` A ) <_ ( ( vol* ` B ) / ( 1 / C ) ) ) ) |
| 19 | 17 18 | mpbird | |- ( ph -> ( ( vol* ` A ) x. ( 1 / C ) ) <_ ( vol* ` B ) ) |
| 20 | 9 19 | eqbrtrd | |- ( ph -> ( ( vol* ` A ) / C ) <_ ( vol* ` B ) ) |
| 21 | 16 14 | letri3d | |- ( ph -> ( ( vol* ` B ) = ( ( vol* ` A ) / C ) <-> ( ( vol* ` B ) <_ ( ( vol* ` A ) / C ) /\ ( ( vol* ` A ) / C ) <_ ( vol* ` B ) ) ) ) |
| 22 | 5 20 21 | mpbir2and | |- ( ph -> ( vol* ` B ) = ( ( vol* ` A ) / C ) ) |