This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpfind.cb | |- B = ( Base ` S ) |
|
| mpfind.cp | |- .+ = ( +g ` S ) |
||
| mpfind.ct | |- .x. = ( .r ` S ) |
||
| mpfind.cq | |- Q = ran ( ( I evalSub S ) ` R ) |
||
| mpfind.ad | |- ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) -> ze ) |
||
| mpfind.mu | |- ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) -> si ) |
||
| mpfind.wa | |- ( x = ( ( B ^m I ) X. { f } ) -> ( ps <-> ch ) ) |
||
| mpfind.wb | |- ( x = ( g e. ( B ^m I ) |-> ( g ` f ) ) -> ( ps <-> th ) ) |
||
| mpfind.wc | |- ( x = f -> ( ps <-> ta ) ) |
||
| mpfind.wd | |- ( x = g -> ( ps <-> et ) ) |
||
| mpfind.we | |- ( x = ( f oF .+ g ) -> ( ps <-> ze ) ) |
||
| mpfind.wf | |- ( x = ( f oF .x. g ) -> ( ps <-> si ) ) |
||
| mpfind.wg | |- ( x = A -> ( ps <-> rh ) ) |
||
| mpfind.co | |- ( ( ph /\ f e. R ) -> ch ) |
||
| mpfind.pr | |- ( ( ph /\ f e. I ) -> th ) |
||
| mpfind.a | |- ( ph -> A e. Q ) |
||
| Assertion | mpfind | |- ( ph -> rh ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpfind.cb | |- B = ( Base ` S ) |
|
| 2 | mpfind.cp | |- .+ = ( +g ` S ) |
|
| 3 | mpfind.ct | |- .x. = ( .r ` S ) |
|
| 4 | mpfind.cq | |- Q = ran ( ( I evalSub S ) ` R ) |
|
| 5 | mpfind.ad | |- ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) -> ze ) |
|
| 6 | mpfind.mu | |- ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) -> si ) |
|
| 7 | mpfind.wa | |- ( x = ( ( B ^m I ) X. { f } ) -> ( ps <-> ch ) ) |
|
| 8 | mpfind.wb | |- ( x = ( g e. ( B ^m I ) |-> ( g ` f ) ) -> ( ps <-> th ) ) |
|
| 9 | mpfind.wc | |- ( x = f -> ( ps <-> ta ) ) |
|
| 10 | mpfind.wd | |- ( x = g -> ( ps <-> et ) ) |
|
| 11 | mpfind.we | |- ( x = ( f oF .+ g ) -> ( ps <-> ze ) ) |
|
| 12 | mpfind.wf | |- ( x = ( f oF .x. g ) -> ( ps <-> si ) ) |
|
| 13 | mpfind.wg | |- ( x = A -> ( ps <-> rh ) ) |
|
| 14 | mpfind.co | |- ( ( ph /\ f e. R ) -> ch ) |
|
| 15 | mpfind.pr | |- ( ( ph /\ f e. I ) -> th ) |
|
| 16 | mpfind.a | |- ( ph -> A e. Q ) |
|
| 17 | 16 4 | eleqtrdi | |- ( ph -> A e. ran ( ( I evalSub S ) ` R ) ) |
| 18 | 4 | mpfrcl | |- ( A e. Q -> ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) ) |
| 19 | 16 18 | syl | |- ( ph -> ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) ) |
| 20 | eqid | |- ( ( I evalSub S ) ` R ) = ( ( I evalSub S ) ` R ) |
|
| 21 | eqid | |- ( I mPoly ( S |`s R ) ) = ( I mPoly ( S |`s R ) ) |
|
| 22 | eqid | |- ( S |`s R ) = ( S |`s R ) |
|
| 23 | eqid | |- ( S ^s ( B ^m I ) ) = ( S ^s ( B ^m I ) ) |
|
| 24 | 20 21 22 23 1 | evlsrhm | |- ( ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( B ^m I ) ) ) ) |
| 25 | eqid | |- ( Base ` ( I mPoly ( S |`s R ) ) ) = ( Base ` ( I mPoly ( S |`s R ) ) ) |
|
| 26 | eqid | |- ( Base ` ( S ^s ( B ^m I ) ) ) = ( Base ` ( S ^s ( B ^m I ) ) ) |
|
| 27 | 25 26 | rhmf | |- ( ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( B ^m I ) ) ) -> ( ( I evalSub S ) ` R ) : ( Base ` ( I mPoly ( S |`s R ) ) ) --> ( Base ` ( S ^s ( B ^m I ) ) ) ) |
| 28 | 19 24 27 | 3syl | |- ( ph -> ( ( I evalSub S ) ` R ) : ( Base ` ( I mPoly ( S |`s R ) ) ) --> ( Base ` ( S ^s ( B ^m I ) ) ) ) |
| 29 | 28 | ffnd | |- ( ph -> ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 30 | fvelrnb | |- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( A e. ran ( ( I evalSub S ) ` R ) <-> E. y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ( ( ( I evalSub S ) ` R ) ` y ) = A ) ) |
|
| 31 | 29 30 | syl | |- ( ph -> ( A e. ran ( ( I evalSub S ) ` R ) <-> E. y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ( ( ( I evalSub S ) ` R ) ` y ) = A ) ) |
| 32 | 17 31 | mpbid | |- ( ph -> E. y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ( ( ( I evalSub S ) ` R ) ` y ) = A ) |
| 33 | 28 | ffund | |- ( ph -> Fun ( ( I evalSub S ) ` R ) ) |
| 34 | eqid | |- ( Base ` ( S |`s R ) ) = ( Base ` ( S |`s R ) ) |
|
| 35 | eqid | |- ( I mVar ( S |`s R ) ) = ( I mVar ( S |`s R ) ) |
|
| 36 | eqid | |- ( +g ` ( I mPoly ( S |`s R ) ) ) = ( +g ` ( I mPoly ( S |`s R ) ) ) |
|
| 37 | eqid | |- ( .r ` ( I mPoly ( S |`s R ) ) ) = ( .r ` ( I mPoly ( S |`s R ) ) ) |
|
| 38 | eqid | |- ( algSc ` ( I mPoly ( S |`s R ) ) ) = ( algSc ` ( I mPoly ( S |`s R ) ) ) |
|
| 39 | 19 | simp1d | |- ( ph -> I e. _V ) |
| 40 | 19 | simp2d | |- ( ph -> S e. CRing ) |
| 41 | 19 | simp3d | |- ( ph -> R e. ( SubRing ` S ) ) |
| 42 | 22 | subrgcrng | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( S |`s R ) e. CRing ) |
| 43 | 40 41 42 | syl2anc | |- ( ph -> ( S |`s R ) e. CRing ) |
| 44 | crngring | |- ( ( S |`s R ) e. CRing -> ( S |`s R ) e. Ring ) |
|
| 45 | 43 44 | syl | |- ( ph -> ( S |`s R ) e. Ring ) |
| 46 | 21 39 45 | mplringd | |- ( ph -> ( I mPoly ( S |`s R ) ) e. Ring ) |
| 47 | 46 | adantr | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( I mPoly ( S |`s R ) ) e. Ring ) |
| 48 | simprl | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
|
| 49 | elpreima | |- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) ) |
|
| 50 | 29 49 | syl | |- ( ph -> ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) ) |
| 51 | 50 | adantr | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) ) |
| 52 | 48 51 | mpbid | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) |
| 53 | 52 | simpld | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> i e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 54 | simprr | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
|
| 55 | elpreima | |- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( j e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) |
|
| 56 | 29 55 | syl | |- ( ph -> ( j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( j e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) |
| 57 | 56 | adantr | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( j e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) |
| 58 | 54 57 | mpbid | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( j e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) |
| 59 | 58 | simpld | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 60 | 25 36 | ringacl | |- ( ( ( I mPoly ( S |`s R ) ) e. Ring /\ i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 61 | 47 53 59 60 | syl3anc | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 62 | rhmghm | |- ( ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( B ^m I ) ) ) -> ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) GrpHom ( S ^s ( B ^m I ) ) ) ) |
|
| 63 | 19 24 62 | 3syl | |- ( ph -> ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) GrpHom ( S ^s ( B ^m I ) ) ) ) |
| 64 | 63 | adantr | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) GrpHom ( S ^s ( B ^m I ) ) ) ) |
| 65 | eqid | |- ( +g ` ( S ^s ( B ^m I ) ) ) = ( +g ` ( S ^s ( B ^m I ) ) ) |
|
| 66 | 25 36 65 | ghmlin | |- ( ( ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) GrpHom ( S ^s ( B ^m I ) ) ) /\ i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) ( +g ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 67 | 64 53 59 66 | syl3anc | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) ( +g ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 68 | 40 | adantr | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> S e. CRing ) |
| 69 | ovexd | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( B ^m I ) e. _V ) |
|
| 70 | 28 | adantr | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( I evalSub S ) ` R ) : ( Base ` ( I mPoly ( S |`s R ) ) ) --> ( Base ` ( S ^s ( B ^m I ) ) ) ) |
| 71 | 70 53 | ffvelcdmd | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. ( Base ` ( S ^s ( B ^m I ) ) ) ) |
| 72 | 70 59 | ffvelcdmd | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. ( Base ` ( S ^s ( B ^m I ) ) ) ) |
| 73 | 23 26 68 69 71 72 2 65 | pwsplusgval | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) ( +g ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 74 | 67 73 | eqtrd | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 75 | simpl | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ph ) |
|
| 76 | fnfvelrn | |- ( ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) /\ i e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. ran ( ( I evalSub S ) ` R ) ) |
|
| 77 | 29 53 76 | syl2an2r | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. ran ( ( I evalSub S ) ` R ) ) |
| 78 | 77 4 | eleqtrrdi | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. Q ) |
| 79 | fvimacnvi | |- ( ( Fun ( ( I evalSub S ) ` R ) /\ i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) |
|
| 80 | 33 48 79 | syl2an2r | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) |
| 81 | 78 80 | jca | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) |
| 82 | fnfvelrn | |- ( ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) /\ j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. ran ( ( I evalSub S ) ` R ) ) |
|
| 83 | 29 59 82 | syl2an2r | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. ran ( ( I evalSub S ) ` R ) ) |
| 84 | 83 4 | eleqtrrdi | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. Q ) |
| 85 | fvimacnvi | |- ( ( Fun ( ( I evalSub S ) ` R ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) |
|
| 86 | 33 54 85 | syl2an2r | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) |
| 87 | 84 86 | jca | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) |
| 88 | fvex | |- ( ( ( I evalSub S ) ` R ) ` i ) e. _V |
|
| 89 | fvex | |- ( ( ( I evalSub S ) ` R ) ` j ) e. _V |
|
| 90 | eleq1 | |- ( f = ( ( ( I evalSub S ) ` R ) ` i ) -> ( f e. Q <-> ( ( ( I evalSub S ) ` R ) ` i ) e. Q ) ) |
|
| 91 | vex | |- f e. _V |
|
| 92 | 91 9 | elab | |- ( f e. { x | ps } <-> ta ) |
| 93 | eleq1 | |- ( f = ( ( ( I evalSub S ) ` R ) ` i ) -> ( f e. { x | ps } <-> ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) |
|
| 94 | 92 93 | bitr3id | |- ( f = ( ( ( I evalSub S ) ` R ) ` i ) -> ( ta <-> ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) |
| 95 | 90 94 | anbi12d | |- ( f = ( ( ( I evalSub S ) ` R ) ` i ) -> ( ( f e. Q /\ ta ) <-> ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) ) ) |
| 96 | eleq1 | |- ( g = ( ( ( I evalSub S ) ` R ) ` j ) -> ( g e. Q <-> ( ( ( I evalSub S ) ` R ) ` j ) e. Q ) ) |
|
| 97 | vex | |- g e. _V |
|
| 98 | 97 10 | elab | |- ( g e. { x | ps } <-> et ) |
| 99 | eleq1 | |- ( g = ( ( ( I evalSub S ) ` R ) ` j ) -> ( g e. { x | ps } <-> ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) |
|
| 100 | 98 99 | bitr3id | |- ( g = ( ( ( I evalSub S ) ` R ) ` j ) -> ( et <-> ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) |
| 101 | 96 100 | anbi12d | |- ( g = ( ( ( I evalSub S ) ` R ) ` j ) -> ( ( g e. Q /\ et ) <-> ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) |
| 102 | 95 101 | bi2anan9 | |- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) <-> ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) ) |
| 103 | 102 | anbi2d | |- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) <-> ( ph /\ ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) ) ) |
| 104 | ovex | |- ( f oF .+ g ) e. _V |
|
| 105 | 104 11 | elab | |- ( ( f oF .+ g ) e. { x | ps } <-> ze ) |
| 106 | oveq12 | |- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( f oF .+ g ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
|
| 107 | 106 | eleq1d | |- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( f oF .+ g ) e. { x | ps } <-> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) |
| 108 | 105 107 | bitr3id | |- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ze <-> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) |
| 109 | 103 108 | imbi12d | |- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) -> ze ) <-> ( ( ph /\ ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) ) |
| 110 | 88 89 109 5 | vtocl2 | |- ( ( ph /\ ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) |
| 111 | 75 81 87 110 | syl12anc | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .+ ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) |
| 112 | 74 111 | eqeltrd | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) |
| 113 | elpreima | |- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
|
| 114 | 29 113 | syl | |- ( ph -> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
| 115 | 114 | adantr | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
| 116 | 61 112 115 | mpbir2and | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 117 | 116 | adantlr | |- ( ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( +g ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 118 | 25 37 | ringcl | |- ( ( ( I mPoly ( S |`s R ) ) e. Ring /\ i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 119 | 47 53 59 118 | syl3anc | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 120 | eqid | |- ( mulGrp ` ( I mPoly ( S |`s R ) ) ) = ( mulGrp ` ( I mPoly ( S |`s R ) ) ) |
|
| 121 | eqid | |- ( mulGrp ` ( S ^s ( B ^m I ) ) ) = ( mulGrp ` ( S ^s ( B ^m I ) ) ) |
|
| 122 | 120 121 | rhmmhm | |- ( ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( B ^m I ) ) ) -> ( ( I evalSub S ) ` R ) e. ( ( mulGrp ` ( I mPoly ( S |`s R ) ) ) MndHom ( mulGrp ` ( S ^s ( B ^m I ) ) ) ) ) |
| 123 | 19 24 122 | 3syl | |- ( ph -> ( ( I evalSub S ) ` R ) e. ( ( mulGrp ` ( I mPoly ( S |`s R ) ) ) MndHom ( mulGrp ` ( S ^s ( B ^m I ) ) ) ) ) |
| 124 | 123 | adantr | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( I evalSub S ) ` R ) e. ( ( mulGrp ` ( I mPoly ( S |`s R ) ) ) MndHom ( mulGrp ` ( S ^s ( B ^m I ) ) ) ) ) |
| 125 | 120 25 | mgpbas | |- ( Base ` ( I mPoly ( S |`s R ) ) ) = ( Base ` ( mulGrp ` ( I mPoly ( S |`s R ) ) ) ) |
| 126 | 120 37 | mgpplusg | |- ( .r ` ( I mPoly ( S |`s R ) ) ) = ( +g ` ( mulGrp ` ( I mPoly ( S |`s R ) ) ) ) |
| 127 | eqid | |- ( .r ` ( S ^s ( B ^m I ) ) ) = ( .r ` ( S ^s ( B ^m I ) ) ) |
|
| 128 | 121 127 | mgpplusg | |- ( .r ` ( S ^s ( B ^m I ) ) ) = ( +g ` ( mulGrp ` ( S ^s ( B ^m I ) ) ) ) |
| 129 | 125 126 128 | mhmlin | |- ( ( ( ( I evalSub S ) ` R ) e. ( ( mulGrp ` ( I mPoly ( S |`s R ) ) ) MndHom ( mulGrp ` ( S ^s ( B ^m I ) ) ) ) /\ i e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ j e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) ( .r ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 130 | 124 53 59 129 | syl3anc | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) ( .r ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 131 | 23 26 68 69 71 72 3 127 | pwsmulrval | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) ( .r ` ( S ^s ( B ^m I ) ) ) ( ( ( I evalSub S ) ` R ) ` j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 132 | 130 131 | eqtrd | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
| 133 | ovex | |- ( f oF .x. g ) e. _V |
|
| 134 | 133 12 | elab | |- ( ( f oF .x. g ) e. { x | ps } <-> si ) |
| 135 | oveq12 | |- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( f oF .x. g ) = ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) ) |
|
| 136 | 135 | eleq1d | |- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( f oF .x. g ) e. { x | ps } <-> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) |
| 137 | 134 136 | bitr3id | |- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( si <-> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) |
| 138 | 103 137 | imbi12d | |- ( ( f = ( ( ( I evalSub S ) ` R ) ` i ) /\ g = ( ( ( I evalSub S ) ` R ) ` j ) ) -> ( ( ( ph /\ ( ( f e. Q /\ ta ) /\ ( g e. Q /\ et ) ) ) -> si ) <-> ( ( ph /\ ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) ) ) |
| 139 | 88 89 138 6 | vtocl2 | |- ( ( ph /\ ( ( ( ( ( I evalSub S ) ` R ) ` i ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` i ) e. { x | ps } ) /\ ( ( ( ( I evalSub S ) ` R ) ` j ) e. Q /\ ( ( ( I evalSub S ) ` R ) ` j ) e. { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) |
| 140 | 75 81 87 139 | syl12anc | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` i ) oF .x. ( ( ( I evalSub S ) ` R ) ` j ) ) e. { x | ps } ) |
| 141 | 132 140 | eqeltrd | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) |
| 142 | elpreima | |- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
|
| 143 | 29 142 | syl | |- ( ph -> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
| 144 | 143 | adantr | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) ) e. { x | ps } ) ) ) |
| 145 | 119 141 144 | mpbir2and | |- ( ( ph /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 146 | 145 | adantlr | |- ( ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) /\ ( i e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) /\ j e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) ) -> ( i ( .r ` ( I mPoly ( S |`s R ) ) ) j ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 147 | 21 | mplassa | |- ( ( I e. _V /\ ( S |`s R ) e. CRing ) -> ( I mPoly ( S |`s R ) ) e. AssAlg ) |
| 148 | 39 43 147 | syl2anc | |- ( ph -> ( I mPoly ( S |`s R ) ) e. AssAlg ) |
| 149 | eqid | |- ( Scalar ` ( I mPoly ( S |`s R ) ) ) = ( Scalar ` ( I mPoly ( S |`s R ) ) ) |
|
| 150 | 38 149 | asclrhm | |- ( ( I mPoly ( S |`s R ) ) e. AssAlg -> ( algSc ` ( I mPoly ( S |`s R ) ) ) e. ( ( Scalar ` ( I mPoly ( S |`s R ) ) ) RingHom ( I mPoly ( S |`s R ) ) ) ) |
| 151 | eqid | |- ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) = ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) |
|
| 152 | 151 25 | rhmf | |- ( ( algSc ` ( I mPoly ( S |`s R ) ) ) e. ( ( Scalar ` ( I mPoly ( S |`s R ) ) ) RingHom ( I mPoly ( S |`s R ) ) ) -> ( algSc ` ( I mPoly ( S |`s R ) ) ) : ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) --> ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 153 | 148 150 152 | 3syl | |- ( ph -> ( algSc ` ( I mPoly ( S |`s R ) ) ) : ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) --> ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 154 | 153 | adantr | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( algSc ` ( I mPoly ( S |`s R ) ) ) : ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) --> ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 155 | 21 39 43 | mplsca | |- ( ph -> ( S |`s R ) = ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) |
| 156 | 155 | fveq2d | |- ( ph -> ( Base ` ( S |`s R ) ) = ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) ) |
| 157 | 156 | eleq2d | |- ( ph -> ( i e. ( Base ` ( S |`s R ) ) <-> i e. ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) ) ) |
| 158 | 157 | biimpa | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> i e. ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) ) |
| 159 | 154 158 | ffvelcdmd | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 160 | 39 | adantr | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> I e. _V ) |
| 161 | 40 | adantr | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> S e. CRing ) |
| 162 | 41 | adantr | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> R e. ( SubRing ` S ) ) |
| 163 | 1 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ B ) |
| 164 | 22 1 | ressbas2 | |- ( R C_ B -> R = ( Base ` ( S |`s R ) ) ) |
| 165 | 41 163 164 | 3syl | |- ( ph -> R = ( Base ` ( S |`s R ) ) ) |
| 166 | 165 | eleq2d | |- ( ph -> ( i e. R <-> i e. ( Base ` ( S |`s R ) ) ) ) |
| 167 | 166 | biimpar | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> i e. R ) |
| 168 | 20 21 22 1 38 160 161 162 167 | evlssca | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) ) = ( ( B ^m I ) X. { i } ) ) |
| 169 | 14 | ralrimiva | |- ( ph -> A. f e. R ch ) |
| 170 | ovex | |- ( B ^m I ) e. _V |
|
| 171 | vsnex | |- { f } e. _V |
|
| 172 | 170 171 | xpex | |- ( ( B ^m I ) X. { f } ) e. _V |
| 173 | 172 7 | elab | |- ( ( ( B ^m I ) X. { f } ) e. { x | ps } <-> ch ) |
| 174 | sneq | |- ( f = i -> { f } = { i } ) |
|
| 175 | 174 | xpeq2d | |- ( f = i -> ( ( B ^m I ) X. { f } ) = ( ( B ^m I ) X. { i } ) ) |
| 176 | 175 | eleq1d | |- ( f = i -> ( ( ( B ^m I ) X. { f } ) e. { x | ps } <-> ( ( B ^m I ) X. { i } ) e. { x | ps } ) ) |
| 177 | 173 176 | bitr3id | |- ( f = i -> ( ch <-> ( ( B ^m I ) X. { i } ) e. { x | ps } ) ) |
| 178 | 177 | cbvralvw | |- ( A. f e. R ch <-> A. i e. R ( ( B ^m I ) X. { i } ) e. { x | ps } ) |
| 179 | 169 178 | sylib | |- ( ph -> A. i e. R ( ( B ^m I ) X. { i } ) e. { x | ps } ) |
| 180 | 179 | r19.21bi | |- ( ( ph /\ i e. R ) -> ( ( B ^m I ) X. { i } ) e. { x | ps } ) |
| 181 | 167 180 | syldan | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( B ^m I ) X. { i } ) e. { x | ps } ) |
| 182 | 168 181 | eqeltrd | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) ) e. { x | ps } ) |
| 183 | elpreima | |- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) ) e. { x | ps } ) ) ) |
|
| 184 | 29 183 | syl | |- ( ph -> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) ) e. { x | ps } ) ) ) |
| 185 | 184 | adantr | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) ) e. { x | ps } ) ) ) |
| 186 | 159 182 185 | mpbir2and | |- ( ( ph /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 187 | 186 | adantlr | |- ( ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) /\ i e. ( Base ` ( S |`s R ) ) ) -> ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 188 | 39 | adantr | |- ( ( ph /\ i e. I ) -> I e. _V ) |
| 189 | 45 | adantr | |- ( ( ph /\ i e. I ) -> ( S |`s R ) e. Ring ) |
| 190 | simpr | |- ( ( ph /\ i e. I ) -> i e. I ) |
|
| 191 | 21 35 25 188 189 190 | mvrcl | |- ( ( ph /\ i e. I ) -> ( ( I mVar ( S |`s R ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
| 192 | 40 | adantr | |- ( ( ph /\ i e. I ) -> S e. CRing ) |
| 193 | 41 | adantr | |- ( ( ph /\ i e. I ) -> R e. ( SubRing ` S ) ) |
| 194 | 20 35 22 1 188 192 193 190 | evlsvar | |- ( ( ph /\ i e. I ) -> ( ( ( I evalSub S ) ` R ) ` ( ( I mVar ( S |`s R ) ) ` i ) ) = ( g e. ( B ^m I ) |-> ( g ` i ) ) ) |
| 195 | 170 | mptex | |- ( g e. ( B ^m I ) |-> ( g ` f ) ) e. _V |
| 196 | 195 8 | elab | |- ( ( g e. ( B ^m I ) |-> ( g ` f ) ) e. { x | ps } <-> th ) |
| 197 | 15 196 | sylibr | |- ( ( ph /\ f e. I ) -> ( g e. ( B ^m I ) |-> ( g ` f ) ) e. { x | ps } ) |
| 198 | 197 | ralrimiva | |- ( ph -> A. f e. I ( g e. ( B ^m I ) |-> ( g ` f ) ) e. { x | ps } ) |
| 199 | fveq2 | |- ( f = i -> ( g ` f ) = ( g ` i ) ) |
|
| 200 | 199 | mpteq2dv | |- ( f = i -> ( g e. ( B ^m I ) |-> ( g ` f ) ) = ( g e. ( B ^m I ) |-> ( g ` i ) ) ) |
| 201 | 200 | eleq1d | |- ( f = i -> ( ( g e. ( B ^m I ) |-> ( g ` f ) ) e. { x | ps } <-> ( g e. ( B ^m I ) |-> ( g ` i ) ) e. { x | ps } ) ) |
| 202 | 201 | cbvralvw | |- ( A. f e. I ( g e. ( B ^m I ) |-> ( g ` f ) ) e. { x | ps } <-> A. i e. I ( g e. ( B ^m I ) |-> ( g ` i ) ) e. { x | ps } ) |
| 203 | 198 202 | sylib | |- ( ph -> A. i e. I ( g e. ( B ^m I ) |-> ( g ` i ) ) e. { x | ps } ) |
| 204 | 203 | r19.21bi | |- ( ( ph /\ i e. I ) -> ( g e. ( B ^m I ) |-> ( g ` i ) ) e. { x | ps } ) |
| 205 | 194 204 | eqeltrd | |- ( ( ph /\ i e. I ) -> ( ( ( I evalSub S ) ` R ) ` ( ( I mVar ( S |`s R ) ) ` i ) ) e. { x | ps } ) |
| 206 | elpreima | |- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( I mVar ( S |`s R ) ) ` i ) ) e. { x | ps } ) ) ) |
|
| 207 | 29 206 | syl | |- ( ph -> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( I mVar ( S |`s R ) ) ` i ) ) e. { x | ps } ) ) ) |
| 208 | 207 | adantr | |- ( ( ph /\ i e. I ) -> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) <-> ( ( ( I mVar ( S |`s R ) ) ` i ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( ( I evalSub S ) ` R ) ` ( ( I mVar ( S |`s R ) ) ` i ) ) e. { x | ps } ) ) ) |
| 209 | 191 205 208 | mpbir2and | |- ( ( ph /\ i e. I ) -> ( ( I mVar ( S |`s R ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 210 | 209 | adantlr | |- ( ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) /\ i e. I ) -> ( ( I mVar ( S |`s R ) ) ` i ) e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 211 | simpr | |- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
|
| 212 | 39 | adantr | |- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> I e. _V ) |
| 213 | 43 | adantr | |- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( S |`s R ) e. CRing ) |
| 214 | 34 35 21 36 37 38 25 117 146 187 210 211 212 213 | mplind | |- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> y e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) |
| 215 | fvimacnvi | |- ( ( Fun ( ( I evalSub S ) ` R ) /\ y e. ( `' ( ( I evalSub S ) ` R ) " { x | ps } ) ) -> ( ( ( I evalSub S ) ` R ) ` y ) e. { x | ps } ) |
|
| 216 | 33 214 215 | syl2an2r | |- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) ` y ) e. { x | ps } ) |
| 217 | eleq1 | |- ( ( ( ( I evalSub S ) ` R ) ` y ) = A -> ( ( ( ( I evalSub S ) ` R ) ` y ) e. { x | ps } <-> A e. { x | ps } ) ) |
|
| 218 | 216 217 | syl5ibcom | |- ( ( ph /\ y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( ( I evalSub S ) ` R ) ` y ) = A -> A e. { x | ps } ) ) |
| 219 | 218 | rexlimdva | |- ( ph -> ( E. y e. ( Base ` ( I mPoly ( S |`s R ) ) ) ( ( ( I evalSub S ) ` R ) ` y ) = A -> A e. { x | ps } ) ) |
| 220 | 32 219 | mpd | |- ( ph -> A e. { x | ps } ) |
| 221 | 13 | elabg | |- ( A e. Q -> ( A e. { x | ps } <-> rh ) ) |
| 222 | 16 221 | syl | |- ( ph -> ( A e. { x | ps } <-> rh ) ) |
| 223 | 220 222 | mpbid | |- ( ph -> rh ) |