This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpfrcl.q | |- Q = ran ( ( I evalSub S ) ` R ) |
|
| Assertion | mpfrcl | |- ( X e. Q -> ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpfrcl.q | |- Q = ran ( ( I evalSub S ) ` R ) |
|
| 2 | ne0i | |- ( X e. ran ( ( I evalSub S ) ` R ) -> ran ( ( I evalSub S ) ` R ) =/= (/) ) |
|
| 3 | 2 1 | eleq2s | |- ( X e. Q -> ran ( ( I evalSub S ) ` R ) =/= (/) ) |
| 4 | rneq | |- ( ( ( I evalSub S ) ` R ) = (/) -> ran ( ( I evalSub S ) ` R ) = ran (/) ) |
|
| 5 | rn0 | |- ran (/) = (/) |
|
| 6 | 4 5 | eqtrdi | |- ( ( ( I evalSub S ) ` R ) = (/) -> ran ( ( I evalSub S ) ` R ) = (/) ) |
| 7 | 6 | necon3i | |- ( ran ( ( I evalSub S ) ` R ) =/= (/) -> ( ( I evalSub S ) ` R ) =/= (/) ) |
| 8 | fveq1 | |- ( ( I evalSub S ) = (/) -> ( ( I evalSub S ) ` R ) = ( (/) ` R ) ) |
|
| 9 | 0fv | |- ( (/) ` R ) = (/) |
|
| 10 | 8 9 | eqtrdi | |- ( ( I evalSub S ) = (/) -> ( ( I evalSub S ) ` R ) = (/) ) |
| 11 | 10 | necon3i | |- ( ( ( I evalSub S ) ` R ) =/= (/) -> ( I evalSub S ) =/= (/) ) |
| 12 | reldmevls | |- Rel dom evalSub |
|
| 13 | 12 | ovprc1 | |- ( -. I e. _V -> ( I evalSub S ) = (/) ) |
| 14 | 13 | necon1ai | |- ( ( I evalSub S ) =/= (/) -> I e. _V ) |
| 15 | n0 | |- ( ( I evalSub S ) =/= (/) <-> E. a a e. ( I evalSub S ) ) |
|
| 16 | df-evls | |- evalSub = ( i e. _V , s e. CRing |-> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |
|
| 17 | 16 | elmpocl2 | |- ( a e. ( I evalSub S ) -> S e. CRing ) |
| 18 | 17 | a1d | |- ( a e. ( I evalSub S ) -> ( I e. _V -> S e. CRing ) ) |
| 19 | 18 | exlimiv | |- ( E. a a e. ( I evalSub S ) -> ( I e. _V -> S e. CRing ) ) |
| 20 | 15 19 | sylbi | |- ( ( I evalSub S ) =/= (/) -> ( I e. _V -> S e. CRing ) ) |
| 21 | 14 20 | jcai | |- ( ( I evalSub S ) =/= (/) -> ( I e. _V /\ S e. CRing ) ) |
| 22 | 11 21 | syl | |- ( ( ( I evalSub S ) ` R ) =/= (/) -> ( I e. _V /\ S e. CRing ) ) |
| 23 | fvex | |- ( Base ` s ) e. _V |
|
| 24 | nfcv | |- F/_ b ( SubRing ` s ) |
|
| 25 | nfcsb1v | |- F/_ b [_ ( Base ` s ) / b ]_ [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) |
|
| 26 | 24 25 | nfmpt | |- F/_ b ( r e. ( SubRing ` s ) |-> [_ ( Base ` s ) / b ]_ [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
| 27 | csbeq1a | |- ( b = ( Base ` s ) -> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = [_ ( Base ` s ) / b ]_ [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
|
| 28 | 27 | mpteq2dv | |- ( b = ( Base ` s ) -> ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` s ) |-> [_ ( Base ` s ) / b ]_ [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |
| 29 | 23 26 28 | csbief | |- [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` s ) |-> [_ ( Base ` s ) / b ]_ [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
| 30 | fveq2 | |- ( s = S -> ( SubRing ` s ) = ( SubRing ` S ) ) |
|
| 31 | 30 | adantl | |- ( ( i = I /\ s = S ) -> ( SubRing ` s ) = ( SubRing ` S ) ) |
| 32 | fveq2 | |- ( s = S -> ( Base ` s ) = ( Base ` S ) ) |
|
| 33 | 32 | adantl | |- ( ( i = I /\ s = S ) -> ( Base ` s ) = ( Base ` S ) ) |
| 34 | 33 | csbeq1d | |- ( ( i = I /\ s = S ) -> [_ ( Base ` s ) / b ]_ [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = [_ ( Base ` S ) / b ]_ [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
| 35 | id | |- ( i = I -> i = I ) |
|
| 36 | oveq1 | |- ( s = S -> ( s |`s r ) = ( S |`s r ) ) |
|
| 37 | 35 36 | oveqan12d | |- ( ( i = I /\ s = S ) -> ( i mPoly ( s |`s r ) ) = ( I mPoly ( S |`s r ) ) ) |
| 38 | 37 | csbeq1d | |- ( ( i = I /\ s = S ) -> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
| 39 | id | |- ( s = S -> s = S ) |
|
| 40 | oveq2 | |- ( i = I -> ( b ^m i ) = ( b ^m I ) ) |
|
| 41 | 39 40 | oveqan12rd | |- ( ( i = I /\ s = S ) -> ( s ^s ( b ^m i ) ) = ( S ^s ( b ^m I ) ) ) |
| 42 | 41 | oveq2d | |- ( ( i = I /\ s = S ) -> ( w RingHom ( s ^s ( b ^m i ) ) ) = ( w RingHom ( S ^s ( b ^m I ) ) ) ) |
| 43 | 40 | adantr | |- ( ( i = I /\ s = S ) -> ( b ^m i ) = ( b ^m I ) ) |
| 44 | 43 | xpeq1d | |- ( ( i = I /\ s = S ) -> ( ( b ^m i ) X. { x } ) = ( ( b ^m I ) X. { x } ) ) |
| 45 | 44 | mpteq2dv | |- ( ( i = I /\ s = S ) -> ( x e. r |-> ( ( b ^m i ) X. { x } ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) ) |
| 46 | 45 | eqeq2d | |- ( ( i = I /\ s = S ) -> ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) <-> ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) ) ) |
| 47 | 35 36 | oveqan12d | |- ( ( i = I /\ s = S ) -> ( i mVar ( s |`s r ) ) = ( I mVar ( S |`s r ) ) ) |
| 48 | 47 | coeq2d | |- ( ( i = I /\ s = S ) -> ( f o. ( i mVar ( s |`s r ) ) ) = ( f o. ( I mVar ( S |`s r ) ) ) ) |
| 49 | simpl | |- ( ( i = I /\ s = S ) -> i = I ) |
|
| 50 | 43 | mpteq1d | |- ( ( i = I /\ s = S ) -> ( g e. ( b ^m i ) |-> ( g ` x ) ) = ( g e. ( b ^m I ) |-> ( g ` x ) ) ) |
| 51 | 49 50 | mpteq12dv | |- ( ( i = I /\ s = S ) -> ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) |
| 52 | 48 51 | eqeq12d | |- ( ( i = I /\ s = S ) -> ( ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) <-> ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) |
| 53 | 46 52 | anbi12d | |- ( ( i = I /\ s = S ) -> ( ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) <-> ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 54 | 42 53 | riotaeqbidv | |- ( ( i = I /\ s = S ) -> ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 55 | 54 | csbeq2dv | |- ( ( i = I /\ s = S ) -> [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 56 | 38 55 | eqtrd | |- ( ( i = I /\ s = S ) -> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 57 | 56 | csbeq2dv | |- ( ( i = I /\ s = S ) -> [_ ( Base ` S ) / b ]_ [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = [_ ( Base ` S ) / b ]_ [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 58 | 34 57 | eqtrd | |- ( ( i = I /\ s = S ) -> [_ ( Base ` s ) / b ]_ [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = [_ ( Base ` S ) / b ]_ [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 59 | 31 58 | mpteq12dv | |- ( ( i = I /\ s = S ) -> ( r e. ( SubRing ` s ) |-> [_ ( Base ` s ) / b ]_ [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` S ) |-> [_ ( Base ` S ) / b ]_ [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
| 60 | 29 59 | eqtrid | |- ( ( i = I /\ s = S ) -> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` S ) |-> [_ ( Base ` S ) / b ]_ [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
| 61 | fvex | |- ( SubRing ` S ) e. _V |
|
| 62 | 61 | mptex | |- ( r e. ( SubRing ` S ) |-> [_ ( Base ` S ) / b ]_ [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) e. _V |
| 63 | 60 16 62 | ovmpoa | |- ( ( I e. _V /\ S e. CRing ) -> ( I evalSub S ) = ( r e. ( SubRing ` S ) |-> [_ ( Base ` S ) / b ]_ [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
| 64 | 63 | dmeqd | |- ( ( I e. _V /\ S e. CRing ) -> dom ( I evalSub S ) = dom ( r e. ( SubRing ` S ) |-> [_ ( Base ` S ) / b ]_ [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
| 65 | eqid | |- ( r e. ( SubRing ` S ) |-> [_ ( Base ` S ) / b ]_ [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` S ) |-> [_ ( Base ` S ) / b ]_ [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) |
|
| 66 | 65 | dmmptss | |- dom ( r e. ( SubRing ` S ) |-> [_ ( Base ` S ) / b ]_ [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( S ^s ( b ^m I ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( b ^m I ) |-> ( g ` x ) ) ) ) ) ) C_ ( SubRing ` S ) |
| 67 | 64 66 | eqsstrdi | |- ( ( I e. _V /\ S e. CRing ) -> dom ( I evalSub S ) C_ ( SubRing ` S ) ) |
| 68 | 67 | ssneld | |- ( ( I e. _V /\ S e. CRing ) -> ( -. R e. ( SubRing ` S ) -> -. R e. dom ( I evalSub S ) ) ) |
| 69 | ndmfv | |- ( -. R e. dom ( I evalSub S ) -> ( ( I evalSub S ) ` R ) = (/) ) |
|
| 70 | 68 69 | syl6 | |- ( ( I e. _V /\ S e. CRing ) -> ( -. R e. ( SubRing ` S ) -> ( ( I evalSub S ) ` R ) = (/) ) ) |
| 71 | 70 | necon1ad | |- ( ( I e. _V /\ S e. CRing ) -> ( ( ( I evalSub S ) ` R ) =/= (/) -> R e. ( SubRing ` S ) ) ) |
| 72 | 71 | com12 | |- ( ( ( I evalSub S ) ` R ) =/= (/) -> ( ( I e. _V /\ S e. CRing ) -> R e. ( SubRing ` S ) ) ) |
| 73 | 22 72 | jcai | |- ( ( ( I evalSub S ) ` R ) =/= (/) -> ( ( I e. _V /\ S e. CRing ) /\ R e. ( SubRing ` S ) ) ) |
| 74 | df-3an | |- ( ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) <-> ( ( I e. _V /\ S e. CRing ) /\ R e. ( SubRing ` S ) ) ) |
|
| 75 | 73 74 | sylibr | |- ( ( ( I evalSub S ) ` R ) =/= (/) -> ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) ) |
| 76 | 3 7 75 | 3syl | |- ( X e. Q -> ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) ) |