This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015) (Proof shortened by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvar.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsvar.v | |- V = ( I mVar U ) |
||
| evlsvar.u | |- U = ( S |`s R ) |
||
| evlsvar.b | |- B = ( Base ` S ) |
||
| evlsvar.i | |- ( ph -> I e. W ) |
||
| evlsvar.s | |- ( ph -> S e. CRing ) |
||
| evlsvar.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsvar.x | |- ( ph -> X e. I ) |
||
| Assertion | evlsvar | |- ( ph -> ( Q ` ( V ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvar.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsvar.v | |- V = ( I mVar U ) |
|
| 3 | evlsvar.u | |- U = ( S |`s R ) |
|
| 4 | evlsvar.b | |- B = ( Base ` S ) |
|
| 5 | evlsvar.i | |- ( ph -> I e. W ) |
|
| 6 | evlsvar.s | |- ( ph -> S e. CRing ) |
|
| 7 | evlsvar.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 8 | evlsvar.x | |- ( ph -> X e. I ) |
|
| 9 | eqid | |- ( I mPoly U ) = ( I mPoly U ) |
|
| 10 | eqid | |- ( S ^s ( B ^m I ) ) = ( S ^s ( B ^m I ) ) |
|
| 11 | eqid | |- ( algSc ` ( I mPoly U ) ) = ( algSc ` ( I mPoly U ) ) |
|
| 12 | eqid | |- ( x e. R |-> ( ( B ^m I ) X. { x } ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) |
|
| 13 | eqid | |- ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) |
|
| 14 | 1 9 2 3 10 4 11 12 13 | evlsval2 | |- ( ( I e. W /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Q e. ( ( I mPoly U ) RingHom ( S ^s ( B ^m I ) ) ) /\ ( ( Q o. ( algSc ` ( I mPoly U ) ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) /\ ( Q o. V ) = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 15 | 5 6 7 14 | syl3anc | |- ( ph -> ( Q e. ( ( I mPoly U ) RingHom ( S ^s ( B ^m I ) ) ) /\ ( ( Q o. ( algSc ` ( I mPoly U ) ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) /\ ( Q o. V ) = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ) ) ) |
| 16 | 15 | simprrd | |- ( ph -> ( Q o. V ) = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ) |
| 17 | 16 | fveq1d | |- ( ph -> ( ( Q o. V ) ` X ) = ( ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ` X ) ) |
| 18 | eqid | |- ( Base ` ( I mPoly U ) ) = ( Base ` ( I mPoly U ) ) |
|
| 19 | 3 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 20 | 7 19 | syl | |- ( ph -> U e. Ring ) |
| 21 | 9 2 18 5 20 | mvrf2 | |- ( ph -> V : I --> ( Base ` ( I mPoly U ) ) ) |
| 22 | 21 | ffnd | |- ( ph -> V Fn I ) |
| 23 | fvco2 | |- ( ( V Fn I /\ X e. I ) -> ( ( Q o. V ) ` X ) = ( Q ` ( V ` X ) ) ) |
|
| 24 | 22 8 23 | syl2anc | |- ( ph -> ( ( Q o. V ) ` X ) = ( Q ` ( V ` X ) ) ) |
| 25 | fveq2 | |- ( x = X -> ( g ` x ) = ( g ` X ) ) |
|
| 26 | 25 | mpteq2dv | |- ( x = X -> ( g e. ( B ^m I ) |-> ( g ` x ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
| 27 | ovex | |- ( B ^m I ) e. _V |
|
| 28 | 27 | mptex | |- ( g e. ( B ^m I ) |-> ( g ` X ) ) e. _V |
| 29 | 26 13 28 | fvmpt | |- ( X e. I -> ( ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ` X ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
| 30 | 8 29 | syl | |- ( ph -> ( ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ` X ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
| 31 | 17 24 30 | 3eqtr3d | |- ( ph -> ( Q ` ( V ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |