This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvimacnvi | |- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( F ` A ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | |- ( A e. ( `' F " B ) -> { A } C_ ( `' F " B ) ) |
|
| 2 | funimass2 | |- ( ( Fun F /\ { A } C_ ( `' F " B ) ) -> ( F " { A } ) C_ B ) |
|
| 3 | 1 2 | sylan2 | |- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( F " { A } ) C_ B ) |
| 4 | fvex | |- ( F ` A ) e. _V |
|
| 5 | 4 | snss | |- ( ( F ` A ) e. B <-> { ( F ` A ) } C_ B ) |
| 6 | cnvimass | |- ( `' F " B ) C_ dom F |
|
| 7 | 6 | sseli | |- ( A e. ( `' F " B ) -> A e. dom F ) |
| 8 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 9 | fnsnfv | |- ( ( F Fn dom F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
|
| 10 | 8 9 | sylanb | |- ( ( Fun F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
| 11 | 7 10 | sylan2 | |- ( ( Fun F /\ A e. ( `' F " B ) ) -> { ( F ` A ) } = ( F " { A } ) ) |
| 12 | 11 | sseq1d | |- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( { ( F ` A ) } C_ B <-> ( F " { A } ) C_ B ) ) |
| 13 | 5 12 | bitrid | |- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( ( F ` A ) e. B <-> ( F " { A } ) C_ B ) ) |
| 14 | 3 13 | mpbird | |- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( F ` A ) e. B ) |