This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Stefan O'Rear, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsrhm.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsrhm.w | |- W = ( I mPoly U ) |
||
| evlsrhm.u | |- U = ( S |`s R ) |
||
| evlsrhm.t | |- T = ( S ^s ( B ^m I ) ) |
||
| evlsrhm.b | |- B = ( Base ` S ) |
||
| Assertion | evlsrhm | |- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsrhm.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsrhm.w | |- W = ( I mPoly U ) |
|
| 3 | evlsrhm.u | |- U = ( S |`s R ) |
|
| 4 | evlsrhm.t | |- T = ( S ^s ( B ^m I ) ) |
|
| 5 | evlsrhm.b | |- B = ( Base ` S ) |
|
| 6 | eqid | |- ( I mVar U ) = ( I mVar U ) |
|
| 7 | eqid | |- ( algSc ` W ) = ( algSc ` W ) |
|
| 8 | eqid | |- ( x e. R |-> ( ( B ^m I ) X. { x } ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) |
|
| 9 | eqid | |- ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) = ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) |
|
| 10 | 1 2 6 3 4 5 7 8 9 | evlsval2 | |- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Q e. ( W RingHom T ) /\ ( ( Q o. ( algSc ` W ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) /\ ( Q o. ( I mVar U ) ) = ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) ) ) ) |
| 11 | 10 | simpld | |- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom T ) ) |