This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015) (Proof shortened by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlssca.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlssca.w | |- W = ( I mPoly U ) |
||
| evlssca.u | |- U = ( S |`s R ) |
||
| evlssca.b | |- B = ( Base ` S ) |
||
| evlssca.a | |- A = ( algSc ` W ) |
||
| evlssca.i | |- ( ph -> I e. V ) |
||
| evlssca.s | |- ( ph -> S e. CRing ) |
||
| evlssca.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlssca.x | |- ( ph -> X e. R ) |
||
| Assertion | evlssca | |- ( ph -> ( Q ` ( A ` X ) ) = ( ( B ^m I ) X. { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlssca.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlssca.w | |- W = ( I mPoly U ) |
|
| 3 | evlssca.u | |- U = ( S |`s R ) |
|
| 4 | evlssca.b | |- B = ( Base ` S ) |
|
| 5 | evlssca.a | |- A = ( algSc ` W ) |
|
| 6 | evlssca.i | |- ( ph -> I e. V ) |
|
| 7 | evlssca.s | |- ( ph -> S e. CRing ) |
|
| 8 | evlssca.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 9 | evlssca.x | |- ( ph -> X e. R ) |
|
| 10 | eqid | |- ( I mVar U ) = ( I mVar U ) |
|
| 11 | eqid | |- ( S ^s ( B ^m I ) ) = ( S ^s ( B ^m I ) ) |
|
| 12 | eqid | |- ( x e. R |-> ( ( B ^m I ) X. { x } ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) |
|
| 13 | eqid | |- ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) = ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) |
|
| 14 | 1 2 10 3 11 4 5 12 13 | evlsval2 | |- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Q e. ( W RingHom ( S ^s ( B ^m I ) ) ) /\ ( ( Q o. A ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) /\ ( Q o. ( I mVar U ) ) = ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) ) ) ) |
| 15 | 6 7 8 14 | syl3anc | |- ( ph -> ( Q e. ( W RingHom ( S ^s ( B ^m I ) ) ) /\ ( ( Q o. A ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) /\ ( Q o. ( I mVar U ) ) = ( x e. I |-> ( y e. ( B ^m I ) |-> ( y ` x ) ) ) ) ) ) |
| 16 | 15 | simprld | |- ( ph -> ( Q o. A ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) ) |
| 17 | 16 | fveq1d | |- ( ph -> ( ( Q o. A ) ` X ) = ( ( x e. R |-> ( ( B ^m I ) X. { x } ) ) ` X ) ) |
| 18 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 19 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 20 | 3 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 21 | 8 20 | syl | |- ( ph -> U e. Ring ) |
| 22 | 2 18 19 5 6 21 | mplasclf | |- ( ph -> A : ( Base ` U ) --> ( Base ` W ) ) |
| 23 | 4 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ B ) |
| 24 | 3 4 | ressbas2 | |- ( R C_ B -> R = ( Base ` U ) ) |
| 25 | 8 23 24 | 3syl | |- ( ph -> R = ( Base ` U ) ) |
| 26 | 25 | feq2d | |- ( ph -> ( A : R --> ( Base ` W ) <-> A : ( Base ` U ) --> ( Base ` W ) ) ) |
| 27 | 22 26 | mpbird | |- ( ph -> A : R --> ( Base ` W ) ) |
| 28 | fvco3 | |- ( ( A : R --> ( Base ` W ) /\ X e. R ) -> ( ( Q o. A ) ` X ) = ( Q ` ( A ` X ) ) ) |
|
| 29 | 27 9 28 | syl2anc | |- ( ph -> ( ( Q o. A ) ` X ) = ( Q ` ( A ` X ) ) ) |
| 30 | sneq | |- ( x = X -> { x } = { X } ) |
|
| 31 | 30 | xpeq2d | |- ( x = X -> ( ( B ^m I ) X. { x } ) = ( ( B ^m I ) X. { X } ) ) |
| 32 | ovex | |- ( B ^m I ) e. _V |
|
| 33 | snex | |- { X } e. _V |
|
| 34 | 32 33 | xpex | |- ( ( B ^m I ) X. { X } ) e. _V |
| 35 | 31 12 34 | fvmpt | |- ( X e. R -> ( ( x e. R |-> ( ( B ^m I ) X. { x } ) ) ` X ) = ( ( B ^m I ) X. { X } ) ) |
| 36 | 9 35 | syl | |- ( ph -> ( ( x e. R |-> ( ( B ^m I ) X. { x } ) ) ` X ) = ( ( B ^m I ) X. { X } ) ) |
| 37 | 17 29 36 | 3eqtr3d | |- ( ph -> ( Q ` ( A ` X ) ) = ( ( B ^m I ) X. { X } ) ) |