This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . F is convergent in the subspace topology on Y . (Contributed by Mario Carneiro, 7-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | |- X = ( BaseSet ` U ) |
|
| minveco.m | |- M = ( -v ` U ) |
||
| minveco.n | |- N = ( normCV ` U ) |
||
| minveco.y | |- Y = ( BaseSet ` W ) |
||
| minveco.u | |- ( ph -> U e. CPreHilOLD ) |
||
| minveco.w | |- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
||
| minveco.a | |- ( ph -> A e. X ) |
||
| minveco.d | |- D = ( IndMet ` U ) |
||
| minveco.j | |- J = ( MetOpen ` D ) |
||
| minveco.r | |- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
||
| minveco.s | |- S = inf ( R , RR , < ) |
||
| minveco.f | |- ( ph -> F : NN --> Y ) |
||
| minveco.1 | |- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
||
| Assertion | minvecolem4a | |- ( ph -> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | |- X = ( BaseSet ` U ) |
|
| 2 | minveco.m | |- M = ( -v ` U ) |
|
| 3 | minveco.n | |- N = ( normCV ` U ) |
|
| 4 | minveco.y | |- Y = ( BaseSet ` W ) |
|
| 5 | minveco.u | |- ( ph -> U e. CPreHilOLD ) |
|
| 6 | minveco.w | |- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
|
| 7 | minveco.a | |- ( ph -> A e. X ) |
|
| 8 | minveco.d | |- D = ( IndMet ` U ) |
|
| 9 | minveco.j | |- J = ( MetOpen ` D ) |
|
| 10 | minveco.r | |- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
|
| 11 | minveco.s | |- S = inf ( R , RR , < ) |
|
| 12 | minveco.f | |- ( ph -> F : NN --> Y ) |
|
| 13 | minveco.1 | |- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
|
| 14 | phnv | |- ( U e. CPreHilOLD -> U e. NrmCVec ) |
|
| 15 | 5 14 | syl | |- ( ph -> U e. NrmCVec ) |
| 16 | elin | |- ( W e. ( ( SubSp ` U ) i^i CBan ) <-> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) |
|
| 17 | 6 16 | sylib | |- ( ph -> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) |
| 18 | 17 | simpld | |- ( ph -> W e. ( SubSp ` U ) ) |
| 19 | eqid | |- ( IndMet ` W ) = ( IndMet ` W ) |
|
| 20 | eqid | |- ( SubSp ` U ) = ( SubSp ` U ) |
|
| 21 | 4 8 19 20 | sspims | |- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> ( IndMet ` W ) = ( D |` ( Y X. Y ) ) ) |
| 22 | 15 18 21 | syl2anc | |- ( ph -> ( IndMet ` W ) = ( D |` ( Y X. Y ) ) ) |
| 23 | 17 | simprd | |- ( ph -> W e. CBan ) |
| 24 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 25 | 24 19 | cbncms | |- ( W e. CBan -> ( IndMet ` W ) e. ( CMet ` ( BaseSet ` W ) ) ) |
| 26 | 23 25 | syl | |- ( ph -> ( IndMet ` W ) e. ( CMet ` ( BaseSet ` W ) ) ) |
| 27 | 22 26 | eqeltrrd | |- ( ph -> ( D |` ( Y X. Y ) ) e. ( CMet ` ( BaseSet ` W ) ) ) |
| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem3 | |- ( ph -> F e. ( Cau ` D ) ) |
| 29 | 1 8 | imsmet | |- ( U e. NrmCVec -> D e. ( Met ` X ) ) |
| 30 | 5 14 29 | 3syl | |- ( ph -> D e. ( Met ` X ) ) |
| 31 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 32 | 30 31 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 33 | causs | |- ( ( D e. ( *Met ` X ) /\ F : NN --> Y ) -> ( F e. ( Cau ` D ) <-> F e. ( Cau ` ( D |` ( Y X. Y ) ) ) ) ) |
|
| 34 | 32 12 33 | syl2anc | |- ( ph -> ( F e. ( Cau ` D ) <-> F e. ( Cau ` ( D |` ( Y X. Y ) ) ) ) ) |
| 35 | 28 34 | mpbid | |- ( ph -> F e. ( Cau ` ( D |` ( Y X. Y ) ) ) ) |
| 36 | eqid | |- ( MetOpen ` ( D |` ( Y X. Y ) ) ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) |
|
| 37 | 36 | cmetcau | |- ( ( ( D |` ( Y X. Y ) ) e. ( CMet ` ( BaseSet ` W ) ) /\ F e. ( Cau ` ( D |` ( Y X. Y ) ) ) ) -> F e. dom ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ) |
| 38 | 27 35 37 | syl2anc | |- ( ph -> F e. dom ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ) |
| 39 | xmetres | |- ( D e. ( *Met ` X ) -> ( D |` ( Y X. Y ) ) e. ( *Met ` ( X i^i Y ) ) ) |
|
| 40 | 36 | methaus | |- ( ( D |` ( Y X. Y ) ) e. ( *Met ` ( X i^i Y ) ) -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. Haus ) |
| 41 | 32 39 40 | 3syl | |- ( ph -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. Haus ) |
| 42 | lmfun | |- ( ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. Haus -> Fun ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ) |
|
| 43 | funfvbrb | |- ( Fun ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) -> ( F e. dom ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
|
| 44 | 41 42 43 | 3syl | |- ( ph -> ( F e. dom ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
| 45 | 38 44 | mpbid | |- ( ph -> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |