This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funbrfv | |- ( Fun F -> ( A F B -> ( F ` A ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel | |- ( Fun F -> Rel F ) |
|
| 2 | brrelex2 | |- ( ( Rel F /\ A F B ) -> B e. _V ) |
|
| 3 | 1 2 | sylan | |- ( ( Fun F /\ A F B ) -> B e. _V ) |
| 4 | breq2 | |- ( y = B -> ( A F y <-> A F B ) ) |
|
| 5 | 4 | anbi2d | |- ( y = B -> ( ( Fun F /\ A F y ) <-> ( Fun F /\ A F B ) ) ) |
| 6 | eqeq2 | |- ( y = B -> ( ( F ` A ) = y <-> ( F ` A ) = B ) ) |
|
| 7 | 5 6 | imbi12d | |- ( y = B -> ( ( ( Fun F /\ A F y ) -> ( F ` A ) = y ) <-> ( ( Fun F /\ A F B ) -> ( F ` A ) = B ) ) ) |
| 8 | funeu | |- ( ( Fun F /\ A F y ) -> E! y A F y ) |
|
| 9 | tz6.12-1 | |- ( ( A F y /\ E! y A F y ) -> ( F ` A ) = y ) |
|
| 10 | 8 9 | sylan2 | |- ( ( A F y /\ ( Fun F /\ A F y ) ) -> ( F ` A ) = y ) |
| 11 | 10 | anabss7 | |- ( ( Fun F /\ A F y ) -> ( F ` A ) = y ) |
| 12 | 7 11 | vtoclg | |- ( B e. _V -> ( ( Fun F /\ A F B ) -> ( F ` A ) = B ) ) |
| 13 | 3 12 | mpcom | |- ( ( Fun F /\ A F B ) -> ( F ` A ) = B ) |
| 14 | 13 | ex | |- ( Fun F -> ( A F B -> ( F ` A ) = B ) ) |