This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007) (Proof shortened by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmle.1 | |- Z = ( ZZ>= ` M ) |
|
| lmle.3 | |- J = ( MetOpen ` D ) |
||
| lmle.4 | |- ( ph -> D e. ( *Met ` X ) ) |
||
| lmle.6 | |- ( ph -> M e. ZZ ) |
||
| lmle.7 | |- ( ph -> F ( ~~>t ` J ) P ) |
||
| lmle.8 | |- ( ph -> Q e. X ) |
||
| lmle.9 | |- ( ph -> R e. RR* ) |
||
| lmle.10 | |- ( ( ph /\ k e. Z ) -> ( Q D ( F ` k ) ) <_ R ) |
||
| Assertion | lmle | |- ( ph -> ( Q D P ) <_ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmle.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | lmle.3 | |- J = ( MetOpen ` D ) |
|
| 3 | lmle.4 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 4 | lmle.6 | |- ( ph -> M e. ZZ ) |
|
| 5 | lmle.7 | |- ( ph -> F ( ~~>t ` J ) P ) |
|
| 6 | lmle.8 | |- ( ph -> Q e. X ) |
|
| 7 | lmle.9 | |- ( ph -> R e. RR* ) |
|
| 8 | lmle.10 | |- ( ( ph /\ k e. Z ) -> ( Q D ( F ` k ) ) <_ R ) |
|
| 9 | 2 | mopntopon | |- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 10 | 3 9 | syl | |- ( ph -> J e. ( TopOn ` X ) ) |
| 11 | lmrel | |- Rel ( ~~>t ` J ) |
|
| 12 | releldm | |- ( ( Rel ( ~~>t ` J ) /\ F ( ~~>t ` J ) P ) -> F e. dom ( ~~>t ` J ) ) |
|
| 13 | 11 5 12 | sylancr | |- ( ph -> F e. dom ( ~~>t ` J ) ) |
| 14 | 1 10 4 13 | lmff | |- ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) |
| 15 | eqid | |- ( ZZ>= ` j ) = ( ZZ>= ` j ) |
|
| 16 | 10 | adantr | |- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> J e. ( TopOn ` X ) ) |
| 17 | simprl | |- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> j e. Z ) |
|
| 18 | 17 1 | eleqtrdi | |- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> j e. ( ZZ>= ` M ) ) |
| 19 | eluzelz | |- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
|
| 20 | 18 19 | syl | |- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> j e. ZZ ) |
| 21 | 5 | adantr | |- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> F ( ~~>t ` J ) P ) |
| 22 | oveq2 | |- ( x = ( F ` k ) -> ( Q D x ) = ( Q D ( F ` k ) ) ) |
|
| 23 | 22 | breq1d | |- ( x = ( F ` k ) -> ( ( Q D x ) <_ R <-> ( Q D ( F ` k ) ) <_ R ) ) |
| 24 | fvres | |- ( k e. ( ZZ>= ` j ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) = ( F ` k ) ) |
|
| 25 | 24 | adantl | |- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) = ( F ` k ) ) |
| 26 | simprr | |- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) |
|
| 27 | 26 | ffvelcdmda | |- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) e. X ) |
| 28 | 25 27 | eqeltrrd | |- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. X ) |
| 29 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 30 | 17 29 | sylan | |- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 31 | 8 | adantlr | |- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. Z ) -> ( Q D ( F ` k ) ) <_ R ) |
| 32 | 30 31 | syldan | |- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( Q D ( F ` k ) ) <_ R ) |
| 33 | 23 28 32 | elrabd | |- ( ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. { x e. X | ( Q D x ) <_ R } ) |
| 34 | eqid | |- { x e. X | ( Q D x ) <_ R } = { x e. X | ( Q D x ) <_ R } |
|
| 35 | 2 34 | blcld | |- ( ( D e. ( *Met ` X ) /\ Q e. X /\ R e. RR* ) -> { x e. X | ( Q D x ) <_ R } e. ( Clsd ` J ) ) |
| 36 | 3 6 7 35 | syl3anc | |- ( ph -> { x e. X | ( Q D x ) <_ R } e. ( Clsd ` J ) ) |
| 37 | 36 | adantr | |- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> { x e. X | ( Q D x ) <_ R } e. ( Clsd ` J ) ) |
| 38 | 15 16 20 21 33 37 | lmcld | |- ( ( ph /\ ( j e. Z /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> X ) ) -> P e. { x e. X | ( Q D x ) <_ R } ) |
| 39 | 14 38 | rexlimddv | |- ( ph -> P e. { x e. X | ( Q D x ) <_ R } ) |
| 40 | oveq2 | |- ( x = P -> ( Q D x ) = ( Q D P ) ) |
|
| 41 | 40 | breq1d | |- ( x = P -> ( ( Q D x ) <_ R <-> ( Q D P ) <_ R ) ) |
| 42 | 41 | elrab | |- ( P e. { x e. X | ( Q D x ) <_ R } <-> ( P e. X /\ ( Q D P ) <_ R ) ) |
| 43 | 42 | simprbi | |- ( P e. { x e. X | ( Q D x ) <_ R } -> ( Q D P ) <_ R ) |
| 44 | 39 43 | syl | |- ( ph -> ( Q D P ) <_ R ) |