This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 27-Dec-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imsdval.1 | |- X = ( BaseSet ` U ) |
|
| imsdval.3 | |- M = ( -v ` U ) |
||
| imsdval.6 | |- N = ( normCV ` U ) |
||
| imsdval.8 | |- D = ( IndMet ` U ) |
||
| Assertion | imsdval | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A M B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsdval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | imsdval.3 | |- M = ( -v ` U ) |
|
| 3 | imsdval.6 | |- N = ( normCV ` U ) |
|
| 4 | imsdval.8 | |- D = ( IndMet ` U ) |
|
| 5 | 2 3 4 | imsval | |- ( U e. NrmCVec -> D = ( N o. M ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> D = ( N o. M ) ) |
| 7 | 6 | fveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( D ` <. A , B >. ) = ( ( N o. M ) ` <. A , B >. ) ) |
| 8 | 1 2 | nvmf | |- ( U e. NrmCVec -> M : ( X X. X ) --> X ) |
| 9 | opelxpi | |- ( ( A e. X /\ B e. X ) -> <. A , B >. e. ( X X. X ) ) |
|
| 10 | fvco3 | |- ( ( M : ( X X. X ) --> X /\ <. A , B >. e. ( X X. X ) ) -> ( ( N o. M ) ` <. A , B >. ) = ( N ` ( M ` <. A , B >. ) ) ) |
|
| 11 | 8 9 10 | syl2an | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( ( N o. M ) ` <. A , B >. ) = ( N ` ( M ` <. A , B >. ) ) ) |
| 12 | 11 | 3impb | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N o. M ) ` <. A , B >. ) = ( N ` ( M ` <. A , B >. ) ) ) |
| 13 | 7 12 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( D ` <. A , B >. ) = ( N ` ( M ` <. A , B >. ) ) ) |
| 14 | df-ov | |- ( A D B ) = ( D ` <. A , B >. ) |
|
| 15 | df-ov | |- ( A M B ) = ( M ` <. A , B >. ) |
|
| 16 | 15 | fveq2i | |- ( N ` ( A M B ) ) = ( N ` ( M ` <. A , B >. ) ) |
| 17 | 13 14 16 | 3eqtr4g | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A M B ) ) ) |