This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . The convergent point of the Cauchy sequence F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | |- X = ( BaseSet ` U ) |
|
| minveco.m | |- M = ( -v ` U ) |
||
| minveco.n | |- N = ( normCV ` U ) |
||
| minveco.y | |- Y = ( BaseSet ` W ) |
||
| minveco.u | |- ( ph -> U e. CPreHilOLD ) |
||
| minveco.w | |- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
||
| minveco.a | |- ( ph -> A e. X ) |
||
| minveco.d | |- D = ( IndMet ` U ) |
||
| minveco.j | |- J = ( MetOpen ` D ) |
||
| minveco.r | |- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
||
| minveco.s | |- S = inf ( R , RR , < ) |
||
| minveco.f | |- ( ph -> F : NN --> Y ) |
||
| minveco.1 | |- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
||
| Assertion | minvecolem4b | |- ( ph -> ( ( ~~>t ` J ) ` F ) e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | |- X = ( BaseSet ` U ) |
|
| 2 | minveco.m | |- M = ( -v ` U ) |
|
| 3 | minveco.n | |- N = ( normCV ` U ) |
|
| 4 | minveco.y | |- Y = ( BaseSet ` W ) |
|
| 5 | minveco.u | |- ( ph -> U e. CPreHilOLD ) |
|
| 6 | minveco.w | |- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
|
| 7 | minveco.a | |- ( ph -> A e. X ) |
|
| 8 | minveco.d | |- D = ( IndMet ` U ) |
|
| 9 | minveco.j | |- J = ( MetOpen ` D ) |
|
| 10 | minveco.r | |- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
|
| 11 | minveco.s | |- S = inf ( R , RR , < ) |
|
| 12 | minveco.f | |- ( ph -> F : NN --> Y ) |
|
| 13 | minveco.1 | |- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
|
| 14 | phnv | |- ( U e. CPreHilOLD -> U e. NrmCVec ) |
|
| 15 | 5 14 | syl | |- ( ph -> U e. NrmCVec ) |
| 16 | elin | |- ( W e. ( ( SubSp ` U ) i^i CBan ) <-> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) |
|
| 17 | 6 16 | sylib | |- ( ph -> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) |
| 18 | 17 | simpld | |- ( ph -> W e. ( SubSp ` U ) ) |
| 19 | eqid | |- ( SubSp ` U ) = ( SubSp ` U ) |
|
| 20 | 1 4 19 | sspba | |- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> Y C_ X ) |
| 21 | 15 18 20 | syl2anc | |- ( ph -> Y C_ X ) |
| 22 | 1 8 | imsxmet | |- ( U e. NrmCVec -> D e. ( *Met ` X ) ) |
| 23 | 15 22 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 24 | 9 | methaus | |- ( D e. ( *Met ` X ) -> J e. Haus ) |
| 25 | 23 24 | syl | |- ( ph -> J e. Haus ) |
| 26 | lmfun | |- ( J e. Haus -> Fun ( ~~>t ` J ) ) |
|
| 27 | 25 26 | syl | |- ( ph -> Fun ( ~~>t ` J ) ) |
| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4a | |- ( ph -> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
| 29 | eqid | |- ( J |`t Y ) = ( J |`t Y ) |
|
| 30 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 31 | 4 | fvexi | |- Y e. _V |
| 32 | 31 | a1i | |- ( ph -> Y e. _V ) |
| 33 | 9 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
| 34 | 23 33 | syl | |- ( ph -> J e. Top ) |
| 35 | xmetres2 | |- ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) |
|
| 36 | 23 21 35 | syl2anc | |- ( ph -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) |
| 37 | eqid | |- ( MetOpen ` ( D |` ( Y X. Y ) ) ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) |
|
| 38 | 37 | mopntopon | |- ( ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) |
| 39 | 36 38 | syl | |- ( ph -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) |
| 40 | lmcl | |- ( ( ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) /\ F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) |
|
| 41 | 39 28 40 | syl2anc | |- ( ph -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) |
| 42 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 43 | 29 30 32 34 41 42 12 | lmss | |- ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
| 44 | eqid | |- ( D |` ( Y X. Y ) ) = ( D |` ( Y X. Y ) ) |
|
| 45 | 44 9 37 | metrest | |- ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) |
| 46 | 23 21 45 | syl2anc | |- ( ph -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) |
| 47 | 46 | fveq2d | |- ( ph -> ( ~~>t ` ( J |`t Y ) ) = ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ) |
| 48 | 47 | breqd | |- ( ph -> ( F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
| 49 | 43 48 | bitrd | |- ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
| 50 | 28 49 | mpbird | |- ( ph -> F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
| 51 | funbrfv | |- ( Fun ( ~~>t ` J ) -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
|
| 52 | 27 50 51 | sylc | |- ( ph -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
| 53 | 52 41 | eqeltrd | |- ( ph -> ( ( ~~>t ` J ) ` F ) e. Y ) |
| 54 | 21 53 | sseldd | |- ( ph -> ( ( ~~>t ` J ) ` F ) e. X ) |