This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013) (Revised by AV, 4-Sep-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infregelb | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( B <_ inf ( A , RR , < ) <-> A. z e. A B <_ z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | |- < Or RR |
|
| 2 | 1 | a1i | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> < Or RR ) |
| 3 | infm3 | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> E. x e. RR ( A. y e. A -. y < x /\ A. y e. RR ( x < y -> E. w e. A w < y ) ) ) |
|
| 4 | simp1 | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> A C_ RR ) |
|
| 5 | 2 3 4 | infglbb | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( inf ( A , RR , < ) < B <-> E. w e. A w < B ) ) |
| 6 | 5 | notbid | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( -. inf ( A , RR , < ) < B <-> -. E. w e. A w < B ) ) |
| 7 | infrecl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) e. RR ) |
|
| 8 | 7 | anim1i | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( inf ( A , RR , < ) e. RR /\ B e. RR ) ) |
| 9 | 8 | ancomd | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( B e. RR /\ inf ( A , RR , < ) e. RR ) ) |
| 10 | lenlt | |- ( ( B e. RR /\ inf ( A , RR , < ) e. RR ) -> ( B <_ inf ( A , RR , < ) <-> -. inf ( A , RR , < ) < B ) ) |
|
| 11 | 9 10 | syl | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( B <_ inf ( A , RR , < ) <-> -. inf ( A , RR , < ) < B ) ) |
| 12 | simplr | |- ( ( ( A C_ RR /\ B e. RR ) /\ w e. A ) -> B e. RR ) |
|
| 13 | ssel | |- ( A C_ RR -> ( w e. A -> w e. RR ) ) |
|
| 14 | 13 | adantr | |- ( ( A C_ RR /\ B e. RR ) -> ( w e. A -> w e. RR ) ) |
| 15 | 14 | imp | |- ( ( ( A C_ RR /\ B e. RR ) /\ w e. A ) -> w e. RR ) |
| 16 | 12 15 | lenltd | |- ( ( ( A C_ RR /\ B e. RR ) /\ w e. A ) -> ( B <_ w <-> -. w < B ) ) |
| 17 | 16 | ralbidva | |- ( ( A C_ RR /\ B e. RR ) -> ( A. w e. A B <_ w <-> A. w e. A -. w < B ) ) |
| 18 | 17 | 3ad2antl1 | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( A. w e. A B <_ w <-> A. w e. A -. w < B ) ) |
| 19 | ralnex | |- ( A. w e. A -. w < B <-> -. E. w e. A w < B ) |
|
| 20 | 18 19 | bitrdi | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( A. w e. A B <_ w <-> -. E. w e. A w < B ) ) |
| 21 | 6 11 20 | 3bitr4d | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( B <_ inf ( A , RR , < ) <-> A. w e. A B <_ w ) ) |
| 22 | breq2 | |- ( w = z -> ( B <_ w <-> B <_ z ) ) |
|
| 23 | 22 | cbvralvw | |- ( A. w e. A B <_ w <-> A. z e. A B <_ z ) |
| 24 | 21 23 | bitrdi | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( B <_ inf ( A , RR , < ) <-> A. z e. A B <_ z ) ) |