This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The convergence relation is function-like in a Hausdorff space. (Contributed by Mario Carneiro, 26-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmfun | |- ( J e. Haus -> Fun ( ~~>t ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmrel | |- Rel ( ~~>t ` J ) |
|
| 2 | 1 | a1i | |- ( J e. Haus -> Rel ( ~~>t ` J ) ) |
| 3 | simpl | |- ( ( J e. Haus /\ ( x ( ~~>t ` J ) y /\ x ( ~~>t ` J ) z ) ) -> J e. Haus ) |
|
| 4 | simprl | |- ( ( J e. Haus /\ ( x ( ~~>t ` J ) y /\ x ( ~~>t ` J ) z ) ) -> x ( ~~>t ` J ) y ) |
|
| 5 | simprr | |- ( ( J e. Haus /\ ( x ( ~~>t ` J ) y /\ x ( ~~>t ` J ) z ) ) -> x ( ~~>t ` J ) z ) |
|
| 6 | 3 4 5 | lmmo | |- ( ( J e. Haus /\ ( x ( ~~>t ` J ) y /\ x ( ~~>t ` J ) z ) ) -> y = z ) |
| 7 | 6 | ex | |- ( J e. Haus -> ( ( x ( ~~>t ` J ) y /\ x ( ~~>t ` J ) z ) -> y = z ) ) |
| 8 | 7 | alrimiv | |- ( J e. Haus -> A. z ( ( x ( ~~>t ` J ) y /\ x ( ~~>t ` J ) z ) -> y = z ) ) |
| 9 | 8 | alrimiv | |- ( J e. Haus -> A. y A. z ( ( x ( ~~>t ` J ) y /\ x ( ~~>t ` J ) z ) -> y = z ) ) |
| 10 | 9 | alrimiv | |- ( J e. Haus -> A. x A. y A. z ( ( x ( ~~>t ` J ) y /\ x ( ~~>t ` J ) z ) -> y = z ) ) |
| 11 | dffun2 | |- ( Fun ( ~~>t ` J ) <-> ( Rel ( ~~>t ` J ) /\ A. x A. y A. z ( ( x ( ~~>t ` J ) y /\ x ( ~~>t ` J ) z ) -> y = z ) ) ) |
|
| 12 | 2 10 11 | sylanbrc | |- ( J e. Haus -> Fun ( ~~>t ` J ) ) |