This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap denominator with other side of 'less than or equal to'. (Contributed by NM, 30-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lediv23 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / B ) <_ C <-> ( A / C ) <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( B e. RR /\ 0 < B ) -> B e. RR ) |
|
| 2 | gt0ne0 | |- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
|
| 3 | 1 2 | jca | |- ( ( B e. RR /\ 0 < B ) -> ( B e. RR /\ B =/= 0 ) ) |
| 4 | redivcl | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR ) |
|
| 5 | 4 | 3expb | |- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) ) -> ( A / B ) e. RR ) |
| 6 | 3 5 | sylan2 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( A / B ) e. RR ) |
| 7 | 6 | 3adant3 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ C e. RR ) -> ( A / B ) e. RR ) |
| 8 | simp3 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ C e. RR ) -> C e. RR ) |
|
| 9 | simp2 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ C e. RR ) -> ( B e. RR /\ 0 < B ) ) |
|
| 10 | lemul1 | |- ( ( ( A / B ) e. RR /\ C e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) <_ C <-> ( ( A / B ) x. B ) <_ ( C x. B ) ) ) |
|
| 11 | 7 8 9 10 | syl3anc | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ C e. RR ) -> ( ( A / B ) <_ C <-> ( ( A / B ) x. B ) <_ ( C x. B ) ) ) |
| 12 | 11 | 3adant3r | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / B ) <_ C <-> ( ( A / B ) x. B ) <_ ( C x. B ) ) ) |
| 13 | recn | |- ( A e. RR -> A e. CC ) |
|
| 14 | 13 | adantr | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> A e. CC ) |
| 15 | recn | |- ( B e. RR -> B e. CC ) |
|
| 16 | 15 | ad2antrl | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> B e. CC ) |
| 17 | 2 | adantl | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> B =/= 0 ) |
| 18 | 14 16 17 | divcan1d | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) x. B ) = A ) |
| 19 | 18 | 3adant3 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / B ) x. B ) = A ) |
| 20 | 19 | breq1d | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( ( A / B ) x. B ) <_ ( C x. B ) <-> A <_ ( C x. B ) ) ) |
| 21 | remulcl | |- ( ( C e. RR /\ B e. RR ) -> ( C x. B ) e. RR ) |
|
| 22 | 21 | ancoms | |- ( ( B e. RR /\ C e. RR ) -> ( C x. B ) e. RR ) |
| 23 | 22 | adantrr | |- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( C x. B ) e. RR ) |
| 24 | 23 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( C x. B ) e. RR ) |
| 25 | lediv1 | |- ( ( A e. RR /\ ( C x. B ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ ( C x. B ) <-> ( A / C ) <_ ( ( C x. B ) / C ) ) ) |
|
| 26 | 24 25 | syld3an2 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ ( C x. B ) <-> ( A / C ) <_ ( ( C x. B ) / C ) ) ) |
| 27 | recn | |- ( C e. RR -> C e. CC ) |
|
| 28 | 27 | adantr | |- ( ( C e. RR /\ 0 < C ) -> C e. CC ) |
| 29 | gt0ne0 | |- ( ( C e. RR /\ 0 < C ) -> C =/= 0 ) |
|
| 30 | 28 29 | jca | |- ( ( C e. RR /\ 0 < C ) -> ( C e. CC /\ C =/= 0 ) ) |
| 31 | divcan3 | |- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( C x. B ) / C ) = B ) |
|
| 32 | 31 | 3expb | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) / C ) = B ) |
| 33 | 15 30 32 | syl2an | |- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. B ) / C ) = B ) |
| 34 | 33 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. B ) / C ) = B ) |
| 35 | 34 | breq2d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ ( ( C x. B ) / C ) <-> ( A / C ) <_ B ) ) |
| 36 | 26 35 | bitrd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ ( C x. B ) <-> ( A / C ) <_ B ) ) |
| 37 | 36 | 3adant2r | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ ( C x. B ) <-> ( A / C ) <_ B ) ) |
| 38 | 12 20 37 | 3bitrd | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / B ) <_ C <-> ( A / C ) <_ B ) ) |