This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspba.x | |- X = ( BaseSet ` U ) |
|
| sspba.y | |- Y = ( BaseSet ` W ) |
||
| sspba.h | |- H = ( SubSp ` U ) |
||
| Assertion | sspba | |- ( ( U e. NrmCVec /\ W e. H ) -> Y C_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspba.x | |- X = ( BaseSet ` U ) |
|
| 2 | sspba.y | |- Y = ( BaseSet ` W ) |
|
| 3 | sspba.h | |- H = ( SubSp ` U ) |
|
| 4 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 5 | eqid | |- ( +v ` W ) = ( +v ` W ) |
|
| 6 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 7 | eqid | |- ( .sOLD ` W ) = ( .sOLD ` W ) |
|
| 8 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 9 | eqid | |- ( normCV ` W ) = ( normCV ` W ) |
|
| 10 | 4 5 6 7 8 9 3 | isssp | |- ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ ( normCV ` W ) C_ ( normCV ` U ) ) ) ) ) |
| 11 | 10 | simplbda | |- ( ( U e. NrmCVec /\ W e. H ) -> ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ ( normCV ` W ) C_ ( normCV ` U ) ) ) |
| 12 | 11 | simp1d | |- ( ( U e. NrmCVec /\ W e. H ) -> ( +v ` W ) C_ ( +v ` U ) ) |
| 13 | rnss | |- ( ( +v ` W ) C_ ( +v ` U ) -> ran ( +v ` W ) C_ ran ( +v ` U ) ) |
|
| 14 | 12 13 | syl | |- ( ( U e. NrmCVec /\ W e. H ) -> ran ( +v ` W ) C_ ran ( +v ` U ) ) |
| 15 | 2 5 | bafval | |- Y = ran ( +v ` W ) |
| 16 | 1 4 | bafval | |- X = ran ( +v ` U ) |
| 17 | 14 15 16 | 3sstr4g | |- ( ( U e. NrmCVec /\ W e. H ) -> Y C_ X ) |